esm2_t33_650M_UR50D-finetuned
This model is a fine-tuned version of facebook/esm2_t33_650M_UR50D on a task of predicting toxicity of protein sequences whether some protein is toxic (1) or non-toxic (0). It achieves the following results on the evaluation set:
- Loss: 0.4409
- Tp: 539
- Tn: 617
- Fp: 47
- Fn: 93
- Accuracy: 0.8920
- Precision: 0.9198
- Recall: 0.8528
- F1-score: 0.8851
- Auc: 0.8910
- Mcc: 0.7854
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Tp | Tn | Fp | Fn | Accuracy | Precision | Recall | F1-score | Auc | Mcc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.393 | 1.0 | 1296 | 0.3616 | 507 | 615 | 49 | 125 | 0.8657 | 0.9119 | 0.8022 | 0.8535 | 0.8642 | 0.7356 |
0.3052 | 2.0 | 2592 | 0.3159 | 536 | 608 | 56 | 96 | 0.8827 | 0.9054 | 0.8481 | 0.8758 | 0.8819 | 0.7664 |
0.166 | 3.0 | 3888 | 0.4409 | 539 | 617 | 47 | 93 | 0.8920 | 0.9198 | 0.8528 | 0.8851 | 0.8910 | 0.7854 |
Framework versions
- Transformers 4.45.2
- Pytorch 1.13.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 103
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for milka1g/esm2_t33_650M_UR50D-finetuned
Base model
facebook/esm2_t33_650M_UR50D