mBART 25 SentencePiece tokenizer

This tokenizer is used for Mideind's mBART translation models. It is based on Facebooks mBART-25 SentencePiece model. A language token from the original model has been replaced with "is_IS".

Usage example (for debugging):

import sys

from transformers.models import mbart

MODEL_DIR = sys.argv[1]
tokenizer: mbart.MBartTokenizerFast = mbart.MBartTokenizerFast.from_pretrained(
    MODEL_DIR, src_lang="en_XX"
)
is_lang_idx = tokenizer.convert_tokens_to_ids("is_IS")
model = mbart.MBartForConditionalGeneration.from_pretrained(MODEL_DIR)
test_sentence = "This is a test."
input_ids = tokenizer(test_sentence, return_tensors="pt")
print(input_ids)
outputs = model.generate(
    **input_ids, decoder_start_token_id=is_lang_idx
)
print(outputs)
print(tokenizer.batch_decode(outputs))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.