import numpy as np | |
from skimage.metrics import peak_signal_noise_ratio, structural_similarity | |
from typing import Optional | |
def ssim( | |
gt: np.ndarray, pred: np.ndarray, data_range: Optional[float] = None | |
) -> np.ndarray: | |
"""Compute Structural Similarity Index Metric (SSIM)""" | |
if not gt.ndim == 3: | |
raise ValueError("Unexpected number of dimensions in ground truth.") | |
if not gt.ndim == pred.ndim: | |
raise ValueError("Ground truth dimensions does not match pred.") | |
data_range = gt.max() if data_range is None else data_range | |
ssim = np.array([0]) | |
for slice_num in range(gt.shape[0]): | |
ssim = ssim + structural_similarity( | |
gt[slice_num], pred[slice_num], data_range=data_range | |
) | |
return ssim / gt.shape[0] | |
def psnr( | |
gt: np.ndarray, pred: np.ndarray, data_range: Optional[float] = None | |
) -> np.ndarray: | |
"""Compute Peak Signal to Noise Ratio metric (PSNR)""" | |
data_range = gt.max() if data_range is None else data_range | |
return peak_signal_noise_ratio(gt, pred, data_range=data_range) | |