import numpy as np
from skimage.metrics import peak_signal_noise_ratio, structural_similarity
from typing import Optional

def ssim(
    gt: np.ndarray, pred: np.ndarray, data_range: Optional[float] = None
) -> np.ndarray:
    """Compute Structural Similarity Index Metric (SSIM)"""
    if not gt.ndim == 3:
        raise ValueError("Unexpected number of dimensions in ground truth.")
    if not gt.ndim == pred.ndim:
        raise ValueError("Ground truth dimensions does not match pred.")

    data_range = gt.max() if data_range is None else data_range

    ssim = np.array([0])
    for slice_num in range(gt.shape[0]):
        ssim = ssim + structural_similarity(
            gt[slice_num], pred[slice_num], data_range=data_range
        )

    return ssim / gt.shape[0]

def psnr(
    gt: np.ndarray, pred: np.ndarray, data_range: Optional[float] = None
) -> np.ndarray:
    """Compute Peak Signal to Noise Ratio metric (PSNR)"""
    data_range = gt.max() if data_range is None else data_range
    return peak_signal_noise_ratio(gt, pred, data_range=data_range)