Script for Apple Silicon
Script generated by gpt-oss-120b, modified from the original demo/inference_from_file.py
.
Usage
Usage and dependencies are exactly the same as the original demo/inference_from_file.py
script.
Tested on M4 Max 128GB, works for both 1.5b and 7b models.
import argparse
import os
import re
import traceback
from typing import List, Tuple, Union, Dict, Any
import time
import torch
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
class VoiceMapper:
"""Maps speaker names to voice file paths"""
def __init__(self):
self.setup_voice_presets()
# change name according to our preset wav file
new_dict = {}
for name, path in self.voice_presets.items():
if '_' in name:
name = name.split('_')[0]
if '-' in name:
name = name.split('-')[-1]
new_dict[name] = path
self.voice_presets.update(new_dict)
# print(list(self.voice_presets.keys()))
def setup_voice_presets(self):
"""Setup voice presets by scanning the voices directory."""
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
# Check if voices directory exists
if not os.path.exists(voices_dir):
print(f"Warning: Voices directory not found at {voices_dir}")
self.voice_presets = {}
self.available_voices = {}
return
# Scan for all WAV files in the voices directory
self.voice_presets = {}
# Get all .wav files in the voices directory
wav_files = [f for f in os.listdir(voices_dir)
if f.lower().endswith('.wav') and os.path.isfile(os.path.join(voices_dir, f))]
# Create dictionary with filename (without extension) as key
for wav_file in wav_files:
# Remove .wav extension to get the name
name = os.path.splitext(wav_file)[0]
# Create full path
full_path = os.path.join(voices_dir, wav_file)
self.voice_presets[name] = full_path
# Sort the voice presets alphabetically by name for better UI
self.voice_presets = dict(sorted(self.voice_presets.items()))
# Filter out voices that don't exist (this is now redundant but kept for safety)
self.available_voices = {
name: path for name, path in self.voice_presets.items()
if os.path.exists(path)
}
print(f"Found {len(self.available_voices)} voice files in {voices_dir}")
print(f"Available voices: {', '.join(self.available_voices.keys())}")
def get_voice_path(self, speaker_name: str) -> str:
"""Get voice file path for a given speaker name"""
# First try exact match
if speaker_name in self.voice_presets:
return self.voice_presets[speaker_name]
# Try partial matching (case insensitive)
speaker_lower = speaker_name.lower()
for preset_name, path in self.voice_presets.items():
if preset_name.lower() in speaker_lower or speaker_lower in preset_name.lower():
return path
# Default to first voice if no match found
default_voice = list(self.voice_presets.values())[0]
print(f"Warning: No voice preset found for '{speaker_name}', using default voice: {default_voice}")
return default_voice
def parse_txt_script(txt_content: str) -> Tuple[List[str], List[str]]:
"""
Parse txt script content and extract speakers and their text
Fixed pattern: Speaker 1, Speaker 2, Speaker 3, Speaker 4
Returns: (scripts, speaker_numbers)
"""
lines = txt_content.strip().split('\n')
scripts = []
speaker_numbers = []
# Pattern to match "Speaker X:" format where X is a number
speaker_pattern = r'^Speaker\s+(\d+):\s*(.*)$'
current_speaker = None
current_text = ""
for line in lines:
line = line.strip()
if not line:
continue
match = re.match(speaker_pattern, line, re.IGNORECASE)
if match:
# If we have accumulated text from previous speaker, save it
if current_speaker and current_text:
scripts.append(f"Speaker {current_speaker}: {current_text.strip()}")
speaker_numbers.append(current_speaker)
# Start new speaker
current_speaker = match.group(1).strip()
current_text = match.group(2).strip()
else:
# Continue text for current speaker
if current_text:
current_text += " " + line
else:
current_text = line
# Don't forget the last speaker
if current_speaker and current_text:
scripts.append(f"Speaker {current_speaker}: {current_text.strip()}")
speaker_numbers.append(current_speaker)
return scripts, speaker_numbers
def parse_args():
default_device = "mps" if torch.backends.mps.is_available() else "cpu"
parser = argparse.ArgumentParser(description="VibeVoice Processor TXT Input Test")
parser.add_argument(
"--model_path",
type=str,
default="microsoft/VibeVoice-1.5b",
help="Path to the HuggingFace model directory",
)
parser.add_argument(
"--txt_path",
type=str,
default="demo/text_examples/1p_abs.txt",
help="Path to the txt file containing the script",
)
parser.add_argument(
"--speaker_names",
type=str,
nargs='+',
default='Andrew',
help="Speaker names in order (e.g., --speaker_names Andrew Ava 'Bill Gates')",
)
parser.add_argument(
"--output_dir",
type=str,
default="./outputs",
help="Directory to save output audio files",
)
parser.add_argument(
"--device",
type=str,
default=default_device,
help="Device for tensor tests",
)
parser.add_argument(
"--cfg_scale",
type=float,
default=1.3,
help="CFG (Classifier-Free Guidance) scale for generation (default: 1.3)",
)
return parser.parse_args()
def main():
args = parse_args()
device = torch.device(args.device)
# Initialize voice mapper
voice_mapper = VoiceMapper()
# Check if txt file exists
if not os.path.exists(args.txt_path):
print(f"Error: txt file not found: {args.txt_path}")
return
# Read and parse txt file
print(f"Reading script from: {args.txt_path}")
with open(args.txt_path, 'r', encoding='utf-8') as f:
txt_content = f.read()
# Parse the txt content to get speaker numbers
scripts, speaker_numbers = parse_txt_script(txt_content)
if not scripts:
print("Error: No valid speaker scripts found in the txt file")
return
print(f"Found {len(scripts)} speaker segments:")
for i, (script, speaker_num) in enumerate(zip(scripts, speaker_numbers)):
print(f" {i+1}. Speaker {speaker_num}")
print(f" Text preview: {script[:100]}...")
# Map speaker numbers to provided speaker names
speaker_name_mapping = {}
speaker_names_list = args.speaker_names if isinstance(args.speaker_names, list) else [args.speaker_names]
for i, name in enumerate(speaker_names_list, 1):
speaker_name_mapping[str(i)] = name
print(f"\nSpeaker mapping:")
for speaker_num in set(speaker_numbers):
mapped_name = speaker_name_mapping.get(speaker_num, f"Speaker {speaker_num}")
print(f" Speaker {speaker_num} -> {mapped_name}")
# Map speakers to voice files using the provided speaker names
voice_samples = []
actual_speakers = []
# Get unique speaker numbers in order of first appearance
unique_speaker_numbers = []
seen = set()
for speaker_num in speaker_numbers:
if speaker_num not in seen:
unique_speaker_numbers.append(speaker_num)
seen.add(speaker_num)
for speaker_num in unique_speaker_numbers:
speaker_name = speaker_name_mapping.get(speaker_num, f"Speaker {speaker_num}")
voice_path = voice_mapper.get_voice_path(speaker_name)
voice_samples.append(voice_path)
actual_speakers.append(speaker_name)
print(f"Speaker {speaker_num} ('{speaker_name}') -> Voice: {os.path.basename(voice_path)}")
# Prepare data for model
full_script = '\n'.join(scripts)
# Load processor
print(f"Loading processor & model from {args.model_path}")
processor = VibeVoiceProcessor.from_pretrained(args.model_path)
# Load model
try:
model = VibeVoiceForConditionalGenerationInference.from_pretrained(
args.model_path,
torch_dtype=torch.bfloat16,
device_map='auto',
attn_implementation='sdpa' # sdpa works on CPU/MPS
)
except Exception as e:
print(f"[ERROR] : {type(e).__name__}: {e}")
print(traceback.format_exc())
print("Error loading model, trying cpu fallback.")
model = VibeVoiceForConditionalGenerationInference.from_pretrained(
args.model_path,
torch_dtype=torch.bfloat16,
device_map='cpu',
attn_implementation='sdpa'
)
model = model.to(device)
model.eval()
model.set_ddpm_inference_steps(num_steps=10)
if hasattr(model.model, 'language_model'):
print(f"Language model attention: {model.model.language_model.config._attn_implementation}")
# Prepare inputs for the model
inputs = processor(
text=[full_script], # Wrap in list for batch processing
voice_samples=[voice_samples], # Wrap in list for batch processing
padding=True,
return_tensors="pt",
return_attention_mask=True,
)
inputs = inputs.to(device)
print(f"Starting generation with cfg_scale: {args.cfg_scale}")
# Generate audio
start_time = time.time()
outputs = model.generate(
**inputs,
max_new_tokens=None,
cfg_scale=args.cfg_scale,
tokenizer=processor.tokenizer,
# generation_config={'do_sample': False, 'temperature': 0.95, 'top_p': 0.95, 'top_k': 0},
generation_config={'do_sample': False},
verbose=True,
)
generation_time = time.time() - start_time
print(f"Generation time: {generation_time:.2f} seconds")
# Calculate audio duration and additional metrics
if outputs.speech_outputs and outputs.speech_outputs[0] is not None:
# Assuming 24kHz sample rate (common for speech synthesis)
sample_rate = 24000
audio_samples = outputs.speech_outputs[0].shape[-1] if len(outputs.speech_outputs[0].shape) > 0 else len(outputs.speech_outputs[0])
audio_duration = audio_samples / sample_rate
rtf = generation_time / audio_duration if audio_duration > 0 else float('inf')
print(f"Generated audio duration: {audio_duration:.2f} seconds")
print(f"RTF (Real Time Factor): {rtf:.2f}x")
else:
print("No audio output generated")
# Calculate token metrics
input_tokens = inputs['input_ids'].shape[1] # Number of input tokens
output_tokens = outputs.sequences.shape[1] # Total tokens (input + generated)
generated_tokens = output_tokens - input_tokens
print(f"Prefilling tokens: {input_tokens}")
print(f"Generated tokens: {generated_tokens}")
print(f"Total tokens: {output_tokens}")
# Save output
txt_filename = os.path.splitext(os.path.basename(args.txt_path))[0]
output_path = os.path.join(args.output_dir, f"{txt_filename}_generated.wav")
os.makedirs(args.output_dir, exist_ok=True)
processor.save_audio(
outputs.speech_outputs[0], # First (and only) batch item
output_path=output_path,
)
print(f"Saved output to {output_path}")
# Print summary
print("\n" + "="*50)
print("GENERATION SUMMARY")
print("="*50)
print(f"Input file: {args.txt_path}")
print(f"Output file: {output_path}")
print(f"Speaker names: {args.speaker_names}")
print(f"Number of unique speakers: {len(set(speaker_numbers))}")
print(f"Number of segments: {len(scripts)}")
print(f"Prefilling tokens: {input_tokens}")
print(f"Generated tokens: {generated_tokens}")
print(f"Total tokens: {output_tokens}")
print(f"Generation time: {generation_time:.2f} seconds")
print(f"Audio duration: {audio_duration:.2f} seconds")
print(f"RTF (Real Time Factor): {rtf:.2f}x")
print("="*50)
if __name__ == "__main__":
main()
Git Diff
diff --git a/inference_from_file.py b/inference_mps_from_file.py
index 73fbce8..f6b6f84 100644
--- a/inference_from_file.py
+++ b/inference_mps_from_file.py
@@ -137,6 +137,7 @@ def parse_txt_script(txt_content: str) -> Tuple[List[str], List[str]]:
def parse_args():
+ default_device = "mps" if torch.backends.mps.is_available() else "cpu"
parser = argparse.ArgumentParser(description="VibeVoice Processor TXT Input Test")
parser.add_argument(
"--model_path",
@@ -167,7 +168,7 @@ def parse_args():
parser.add_argument(
"--device",
type=str,
- default="cuda" if torch.cuda.is_available() else "cpu",
+ default=default_device,
help="Device for tensor tests",
)
parser.add_argument(
@@ -181,6 +182,7 @@ def parse_args():
def main():
args = parse_args()
+ device = torch.device(args.device)
# Initialize voice mapper
voice_mapper = VoiceMapper()
@@ -239,7 +241,6 @@ def main():
# Prepare data for model
full_script = '\n'.join(scripts)
- full_script = full_script.replace("’", "'")
# Load processor
print(f"Loading processor & model from {args.model_path}")
@@ -250,20 +251,20 @@ def main():
model = VibeVoiceForConditionalGenerationInference.from_pretrained(
args.model_path,
torch_dtype=torch.bfloat16,
- device_map='cuda',
- attn_implementation='flash_attention_2' # flash_attention_2 is recommended
+ device_map='auto',
+ attn_implementation='sdpa' # sdpa works on CPU/MPS
)
except Exception as e:
print(f"[ERROR] : {type(e).__name__}: {e}")
print(traceback.format_exc())
- print("Error loading the model. Trying to use SDPA. However, note that only flash_attention_2 has been fully tested, and using SDPA may result in lower audio quality.")
+ print("Error loading model, trying cpu fallback.")
model = VibeVoiceForConditionalGenerationInference.from_pretrained(
args.model_path,
torch_dtype=torch.bfloat16,
- device_map='cuda',
+ device_map='cpu',
attn_implementation='sdpa'
)
-
+ model = model.to(device)
model.eval()
model.set_ddpm_inference_steps(num_steps=10)
@@ -278,6 +279,7 @@ def main():
return_tensors="pt",
return_attention_mask=True,
)
+ inputs = inputs.to(device)
print(f"Starting generation with cfg_scale: {args.cfg_scale}")
# Generate audio
Thanks for your contribution. This commit should work for you, too. Just pull the latest code and try it.
Could you share how to setup the environment so we can run VibeVoice on Mac Silicon?
LMX is a way to go. Running on CPU is not a good choice.
Could you please update the "installation" section for Silicon Mac?
https://github.com/microsoft/VibeVoice?tab=readme-ov-file#installation
I want to make sure having a good combination of dependencies and their versions so I run VibeVoice on my Mac.
@vuhung
You can manage your environment with either conda, venv or other ways. After that, simply run pip install -e .
— it should work fine on your Mac.