metadata
language: en
license: mit
library_name: peft
tags:
- image-classification
- pytorch
- resnet
- lora
- birds
- cub-200-2011
- fine-tuning
- computer-vision
datasets:
- cub-200-2011
pipeline_tag: image-classification
widget:
- src: >-
https://images.unsplash.com/photo-1518992028580-6d57bd80f2dd?ixlib=rb-1.2.1&auto=format&fit=crop&w=600&q=80
example_title: Example Bird 1 (e.g., Cardinal)
- src: >-
https://images.unsplash.com/photo-1552728089-57bdde30beb3?ixlib=rb-1.2.1&auto=format&fit=crop&w=600&q=80
example_title: Example Bird 2 (e.g., Blue Jay)
ResNet50 + LoRA for Bird Classification (CUB-200-2011)
This repository contains LoRA (Low-Rank Adaptation) adapters fine-tuned on the CUB-200-2011 dataset for bird image classification. These adapters are designed to be applied to a standard torchvision.models.resnet50
base model.
Model Details
- Base Model:
torchvision.models.resnet50
(pre-trained on ImageNet). - Fine-tuning Method: Low-Rank Adaptation (LoRA) using the
peft
library. - Dataset: Caltech-UCSD Birds-200-2011 (CUB-200-2011)
- Number of Classes: 200 bird species.
- LoRA Configuration:
- Rank (
r
): 8 (as used in training, please verify/update) - Alpha (
lora_alpha
): 16 (as used in training, please verify/update) - Target Modules: ["fc", "conv1", "layer4.0.conv1"] (Please list the actual modules targeted during training)
- Dropout: 0.05
- Bias: "none"
- Rank (
How to Use
First, make sure you have torch
, torchvision
, and peft
installed:
pip install torch torchvision peft Pillow