metadata
library_name: transformers
license: mit
base_model: VietAI/vit5-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
model-index:
- name: ViNormT5
results: []
ViNormT5
This model is a fine-tuned version of VietAI/vit5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2401
- Bleu Score: 78.0055
- Precision: 51.2545
- Recall: 51.2545
- Gen Len: 12.7897
- Err: 51.2545
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu Score | Precision | Recall | Gen Len | Err |
---|---|---|---|---|---|---|---|---|
0.4488 | 1.0 | 1675 | 0.2401 | 78.0055 | 51.2545 | 51.2545 | 12.7897 | 51.2545 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0