ViNormT5 / README.md
meoo225's picture
End of training
8b55df7 verified
|
raw
history blame
1.89 kB
metadata
library_name: transformers
license: mit
base_model: VietAI/vit5-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
model-index:
  - name: ViNormT5
    results: []

ViNormT5

This model is a fine-tuned version of VietAI/vit5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2580
  • Bleu Score: 79.3456
  • Precision: 57.4671
  • Recall: 57.4671
  • Gen Len: 12.7694
  • Err: 57.4671

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Bleu Score Precision Recall Gen Len Err
0.5544 1.0 838 0.2951 75.8053 45.9976 45.9976 12.6918 45.9976
0.2306 2.0 1676 0.2519 77.9908 51.9713 51.9713 12.7515 51.9713
0.1091 3.0 2514 0.2437 78.935 54.9582 54.9582 12.7778 54.9582
0.0435 4.0 3352 0.2580 79.3456 57.4671 57.4671 12.7694 57.4671

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0