Whisper ti qt

This model is a fine-tuned version of openai/whisper-tuwbo on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3074
  • Wer: 37.6797

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.4805 1.3353 1000 0.6147 65.1001
0.9661 2.6707 2000 0.4260 50.2578
0.7665 4.0053 3000 0.3673 45.0413
0.6477 5.3407 4000 0.3415 42.3962
0.581 6.6760 5000 0.3279 40.6422
0.5185 8.0107 6000 0.3181 39.6604
0.4829 9.3460 7000 0.3129 39.2135
0.4284 10.6814 8000 0.3112 38.4829
0.4236 12.0160 9000 0.3074 37.8909
0.4197 13.3514 10000 0.3071 38.1603
0.3905 14.6867 11000 0.3074 37.6797

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.21.0
Downloads last month
31
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.