Whisper Small wow

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2997
  • Wer: 22.5766

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3257 0.7590 1000 0.3054 38.2370
0.1796 1.5180 2000 0.2268 29.0487
0.1038 2.2770 3000 0.2227 26.1642
0.0604 3.0361 4000 0.2151 24.7201
0.0603 3.7951 5000 0.2384 23.6619
0.033 4.5541 6000 0.2567 23.5351
0.0211 5.3131 7000 0.2501 23.2017
0.0081 6.0721 8000 0.2622 23.1781
0.0096 6.8311 9000 0.2675 23.2162
0.0043 7.5901 10000 0.2889 22.6327
0.0027 8.3491 11000 0.2916 22.7324
0.0019 9.1082 12000 0.3027 22.7994
0.0017 9.8672 13000 0.2997 22.5766

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu124
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
21
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for meiiny00/whisper-medium-better-total

Finetuned
(2395)
this model