Whisper Small wow
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2997
- Wer: 22.5766
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3257 | 0.7590 | 1000 | 0.3054 | 38.2370 |
0.1796 | 1.5180 | 2000 | 0.2268 | 29.0487 |
0.1038 | 2.2770 | 3000 | 0.2227 | 26.1642 |
0.0604 | 3.0361 | 4000 | 0.2151 | 24.7201 |
0.0603 | 3.7951 | 5000 | 0.2384 | 23.6619 |
0.033 | 4.5541 | 6000 | 0.2567 | 23.5351 |
0.0211 | 5.3131 | 7000 | 0.2501 | 23.2017 |
0.0081 | 6.0721 | 8000 | 0.2622 | 23.1781 |
0.0096 | 6.8311 | 9000 | 0.2675 | 23.2162 |
0.0043 | 7.5901 | 10000 | 0.2889 | 22.6327 |
0.0027 | 8.3491 | 11000 | 0.2916 | 22.7324 |
0.0019 | 9.1082 | 12000 | 0.3027 | 22.7994 |
0.0017 | 9.8672 | 13000 | 0.2997 | 22.5766 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu124
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 21
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for meiiny00/whisper-medium-better-total
Base model
openai/whisper-small