Suturing World Models
Collection
Latent video diffusion models that capture the physics of surgical suturing
•
2 items
•
Updated
This repository hosts the fine-tuned LTX-Video image-to-video (i2v) diffusion model specialized for generating realistic robotic surgical suturing videos, capturing fine-grained sub-stitch actions including needle positioning, targeting, driving, and withdrawal. The model can differentiate between ideal and non-ideal surgical techniques, making it suitable for applications in surgical training, skill evaluation, and autonomous surgical system development.
import os
import argparse
import torch
from diffusers.utils import export_to_video, load_image
from stg_ltx_i2v_pipeline import LTXImageToVideoSTGPipeline
def generate_video_from_image(
image_path,
prompt,
output_dir="outputs",
width=768,
height=512,
num_frames=49,
lora_path="mehmetkeremturkcan/Suturing-LTX-I2V",
lora_weight=1.0,
prefix="suturingmodel, ",
negative_prompt="worst quality, inconsistent motion, blurry, jittery, distorted",
stg_mode="STG-A",
stg_applied_layers_idx=[19],
stg_scale=1.0,
do_rescaling=True
):
# Create output directory if it doesn't exist
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Load the model
pipe = LTXImageToVideoSTGPipeline.from_pretrained(
"a-r-r-o-w/LTX-Video-0.9.1-diffusers",
torch_dtype=torch.bfloat16,
local_files_only=False
)
# Apply LoRA weights
pipe.load_lora_weights(
lora_path,
weight_name="pytorch_lora_weights.safetensors",
adapter_name="suturing"
)
pipe.set_adapters("suturing", lora_weight)
pipe.to("cuda")
# Prepare the image and prompt
image = load_image(image_path).resize((width, height))
full_prompt = prefix + prompt if prefix else prompt
# Generate output filename
basename = os.path.basename(image_path).split('.')[0]
output_filename = f"{basename}_i2v.mp4"
output_path = os.path.join(output_dir, output_filename)
# Generate the video
print(f"Generating video with prompt: {full_prompt}")
video = pipe(
image=image,
prompt=full_prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
num_frames=num_frames,
num_inference_steps=50,
decode_timestep=0.03,
decode_noise_scale=0.025,
generator=None,
stg_mode=stg_mode,
stg_applied_layers_idx=stg_applied_layers_idx,
stg_scale=stg_scale,
do_rescaling=do_rescaling
).frames[0]
# Export the video
export_to_video(video, output_path, fps=24)
print(f"Video saved to: {output_path}")
return output_path
generate_video_from_image(
image_path="../suturing_datasetv2/images/9_railroad_final_8487-8570_NeedleWithdrawalNonIdeal.png",
prompt="A needlewithdrawalnonideal clip, generated from a backhand task."
)
Metric | Performance |
---|---|
L2 Reconstruction Loss | 0.24501 |
Inference Time | ~18.7 seconds per video |
Further improvements will focus on increasing model robustness, expanding the dataset diversity, and enhancing real-time applicability to robotic surgical scenarios.
Base model
Lightricks/LTX-Video