MBERT_revised-revised-outputs
This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4229
- Accuracy: 0.7431
- F1: 0.7564
- Precision: 0.7276
- Recall: 0.7876
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.6935 | 0.7220 | 1000 | 0.6865 | 0.5423 | 0.6628 | 0.5286 | 0.8883 |
0.6351 | 1.4440 | 2000 | 0.5492 | 0.6788 | 0.7211 | 0.6435 | 0.8199 |
0.5285 | 2.1661 | 3000 | 0.4751 | 0.7106 | 0.7428 | 0.6753 | 0.8255 |
0.4727 | 2.8881 | 4000 | 0.4398 | 0.7220 | 0.7598 | 0.6753 | 0.8686 |
0.4405 | 3.6101 | 5000 | 0.4205 | 0.7293 | 0.7641 | 0.6838 | 0.8656 |
0.4221 | 4.3321 | 6000 | 0.4113 | 0.7339 | 0.7290 | 0.7525 | 0.7069 |
0.41 | 5.0542 | 7000 | 0.4145 | 0.7386 | 0.7700 | 0.6945 | 0.8640 |
0.3957 | 5.7762 | 8000 | 0.4018 | 0.7399 | 0.7807 | 0.6811 | 0.9145 |
0.388 | 6.4982 | 9000 | 0.3993 | 0.7416 | 0.7789 | 0.6872 | 0.8989 |
0.3807 | 7.2202 | 10000 | 0.3996 | 0.7413 | 0.7786 | 0.6870 | 0.8985 |
0.3734 | 7.9422 | 11000 | 0.3939 | 0.7459 | 0.7459 | 0.7553 | 0.7368 |
0.3719 | 8.6643 | 12000 | 0.3923 | 0.7455 | 0.7733 | 0.7043 | 0.8572 |
0.3625 | 9.3863 | 13000 | 0.3942 | 0.7405 | 0.7759 | 0.6894 | 0.8873 |
0.3646 | 10.1083 | 14000 | 0.4070 | 0.7422 | 0.7694 | 0.7032 | 0.8493 |
0.3578 | 10.8303 | 15000 | 0.3988 | 0.7435 | 0.7505 | 0.7396 | 0.7617 |
0.354 | 11.5523 | 16000 | 0.4031 | 0.7470 | 0.7616 | 0.7283 | 0.7980 |
0.3509 | 12.2744 | 17000 | 0.4089 | 0.7472 | 0.7476 | 0.7559 | 0.7394 |
0.3503 | 12.9964 | 18000 | 0.4029 | 0.7488 | 0.7676 | 0.7220 | 0.8195 |
0.3451 | 13.7184 | 19000 | 0.4127 | 0.7439 | 0.7449 | 0.7515 | 0.7384 |
0.3427 | 14.4404 | 20000 | 0.4196 | 0.7469 | 0.7684 | 0.7159 | 0.8291 |
0.3425 | 15.1625 | 21000 | 0.4168 | 0.7501 | 0.7736 | 0.7147 | 0.8429 |
0.3386 | 15.8845 | 22000 | 0.4131 | 0.7459 | 0.7507 | 0.7457 | 0.7559 |
0.3349 | 16.6065 | 23000 | 0.4279 | 0.7443 | 0.7472 | 0.7483 | 0.7460 |
0.336 | 17.3285 | 24000 | 0.4199 | 0.7441 | 0.7523 | 0.7378 | 0.7675 |
0.3341 | 18.0505 | 25000 | 0.4209 | 0.7449 | 0.7523 | 0.7400 | 0.7651 |
0.3333 | 18.7726 | 26000 | 0.4216 | 0.7461 | 0.7602 | 0.7284 | 0.7948 |
0.3323 | 19.4946 | 27000 | 0.4229 | 0.7431 | 0.7564 | 0.7276 | 0.7876 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 186
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for mbzuai-ugrip-statement-tuning/MBERT_revised_2e-06_64_0.1_0.01_110k
Base model
google-bert/bert-base-multilingual-cased