|
---
|
|
language: pl
|
|
tags:
|
|
- generated_from_trainer
|
|
- text-generation
|
|
widget:
|
|
- text: "Bolesław Leśmian - polski poeta"
|
|
datasets:
|
|
- wikipedia
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: gpt_neo_pl_125M
|
|
results:
|
|
- task:
|
|
name: Causal Language Modeling
|
|
type: text-generation
|
|
dataset:
|
|
name: wikipedia 20220720.pl
|
|
type: wikipedia
|
|
args: 20220720.pl
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.4312838299951148
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# gpt_neo_pl_125M_v2
|
|
|
|
This model was trained from scratch on the wikipedia 20220720.pl dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 3.3862
|
|
- Accuracy: 0.4313
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.0002
|
|
- train_batch_size: 1
|
|
- eval_batch_size: 2
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 8
|
|
- total_train_batch_size: 8
|
|
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
|
|
- lr_scheduler_type: cosine
|
|
- lr_scheduler_warmup_steps: 1000
|
|
- num_epochs: 1.0
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
|
| 5.9469 | 0.02 | 1000 | 6.5843 | 0.1435 |
|
|
| 4.9953 | 0.05 | 2000 | 5.7709 | 0.1911 |
|
|
| 4.3754 | 0.07 | 3000 | 5.2624 | 0.2331 |
|
|
| 3.9795 | 0.1 | 4000 | 4.8752 | 0.2731 |
|
|
| 3.7099 | 0.12 | 5000 | 4.5927 | 0.3039 |
|
|
| 3.4747 | 0.15 | 6000 | 4.3942 | 0.3230 |
|
|
| 3.343 | 0.17 | 7000 | 4.2879 | 0.3349 |
|
|
| 3.2767 | 0.2 | 8000 | 4.1698 | 0.3459 |
|
|
| 3.1852 | 0.22 | 9000 | 4.0925 | 0.3534 |
|
|
| 3.0871 | 0.25 | 10000 | 4.0239 | 0.3608 |
|
|
| 3.0746 | 0.27 | 11000 | 3.9646 | 0.3664 |
|
|
| 2.9473 | 0.3 | 12000 | 3.9245 | 0.3706 |
|
|
| 2.9737 | 0.32 | 13000 | 3.8742 | 0.3754 |
|
|
| 2.9193 | 0.35 | 14000 | 3.8285 | 0.3796 |
|
|
| 2.8833 | 0.37 | 15000 | 3.7952 | 0.3837 |
|
|
| 2.8533 | 0.4 | 16000 | 3.7616 | 0.3873 |
|
|
| 2.8654 | 0.42 | 17000 | 3.7296 | 0.3907 |
|
|
| 2.8196 | 0.44 | 18000 | 3.7049 | 0.3936 |
|
|
| 2.7883 | 0.47 | 19000 | 3.6786 | 0.3966 |
|
|
| 2.747 | 0.49 | 20000 | 3.6488 | 0.3990 |
|
|
| 2.7355 | 0.52 | 21000 | 3.6243 | 0.4021 |
|
|
| 2.7355 | 0.54 | 22000 | 3.5982 | 0.4053 |
|
|
| 2.6999 | 0.57 | 23000 | 3.5765 | 0.4075 |
|
|
| 2.7243 | 0.59 | 24000 | 3.5558 | 0.4101 |
|
|
| 2.6526 | 0.62 | 25000 | 3.5371 | 0.4125 |
|
|
| 2.641 | 0.64 | 26000 | 3.5150 | 0.4146 |
|
|
| 2.6602 | 0.67 | 27000 | 3.4971 | 0.4168 |
|
|
| 2.644 | 0.69 | 28000 | 3.4812 | 0.4192 |
|
|
| 2.6558 | 0.72 | 29000 | 3.4622 | 0.4215 |
|
|
| 2.5664 | 0.74 | 30000 | 3.4504 | 0.4229 |
|
|
| 2.5669 | 0.77 | 31000 | 3.4376 | 0.4245 |
|
|
| 2.5498 | 0.79 | 32000 | 3.4263 | 0.4263 |
|
|
| 2.5874 | 0.82 | 33000 | 3.4169 | 0.4274 |
|
|
| 2.5555 | 0.84 | 34000 | 3.4067 | 0.4286 |
|
|
| 2.5502 | 0.86 | 35000 | 3.3997 | 0.4298 |
|
|
| 2.5232 | 0.89 | 36000 | 3.3946 | 0.4302 |
|
|
| 2.5369 | 0.91 | 37000 | 3.3898 | 0.4309 |
|
|
| 2.5335 | 0.94 | 38000 | 3.3869 | 0.4313 |
|
|
| 2.6032 | 0.96 | 39000 | 3.3853 | 0.4315 |
|
|
| 2.5244 | 0.99 | 40000 | 3.3850 | 0.4314 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.22.0.dev0
|
|
- Pytorch 1.12.0
|
|
- Datasets 2.4.0
|
|
- Tokenizers 0.12.1
|
|
|