Quality Improving Stated Aim Classifier
This is an XLM-RoBERTa-large model that is trained to classify whether an explicit stated aim described in a British historical patent is designed to improve quality, reliability or durability.
Hyperparameters:
- lr = 3e-5
- batch size = 44
Validation set results:
{'eval_loss': 0.543449342250824,
'eval_accuracy': 0.925,
'eval_precision': 0.9333333333333332,
'eval_recall': 0.925,
'eval_f1': 0.9233265720081135,
'eval_runtime': 0.5431,
'eval_samples_per_second': 73.652,
'eval_steps_per_second': 1.841}
Test set results:
{'eval_loss': 0.7934615015983582,
'eval_accuracy': 0.875,
'eval_precision': 0.8785266457680251,
'eval_recall': 0.875,
'eval_f1': 0.8709090909090909,
'eval_runtime': 0.6533,
'eval_samples_per_second': 61.226,
'eval_steps_per_second': 1.531}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.