test_yelp_classification
This model is a fine-tuned version of google-bert/bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6214
- Accuracy: 0.2812
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.5984 | 0.25 | 1 | 1.6315 | 0.1875 |
1.6923 | 0.5 | 2 | 1.6576 | 0.1562 |
1.687 | 0.75 | 3 | 1.6407 | 0.2188 |
1.4926 | 1.0 | 4 | 1.6337 | 0.1875 |
1.6151 | 1.25 | 5 | 1.6170 | 0.1875 |
1.4544 | 1.5 | 6 | 1.6112 | 0.25 |
1.3246 | 1.75 | 7 | 1.6068 | 0.2812 |
1.3425 | 2.0 | 8 | 1.6180 | 0.25 |
1.3521 | 2.25 | 9 | 1.6271 | 0.25 |
1.2995 | 2.5 | 10 | 1.6251 | 0.25 |
1.3522 | 2.75 | 11 | 1.6227 | 0.2812 |
1.3706 | 3.0 | 12 | 1.6214 | 0.2812 |
Framework versions
- Transformers 4.53.3
- Pytorch 2.6.0
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 19
Model tree for matteosaponati/test_yelp_classification
Base model
google-bert/bert-base-cased