test_yelp_classification

This model is a fine-tuned version of google-bert/bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6214
  • Accuracy: 0.2812

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5984 0.25 1 1.6315 0.1875
1.6923 0.5 2 1.6576 0.1562
1.687 0.75 3 1.6407 0.2188
1.4926 1.0 4 1.6337 0.1875
1.6151 1.25 5 1.6170 0.1875
1.4544 1.5 6 1.6112 0.25
1.3246 1.75 7 1.6068 0.2812
1.3425 2.0 8 1.6180 0.25
1.3521 2.25 9 1.6271 0.25
1.2995 2.5 10 1.6251 0.25
1.3522 2.75 11 1.6227 0.2812
1.3706 3.0 12 1.6214 0.2812

Framework versions

  • Transformers 4.53.3
  • Pytorch 2.6.0
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
19
Safetensors
Model size
108M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for matteosaponati/test_yelp_classification

Finetuned
(2500)
this model