martindevoto's picture
Model save
d3c3552 verified
|
raw
history blame
5.57 kB
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: finer_ner_finetuning
    results: []

finer_ner_finetuning

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0027

  • Accuracy: 0.9992

  • Precision: 0.9992

  • Recall: 0.9991

  • F1: 0.9991

  • Classification Report: precision recall f1-score support

    DebtInstrumentBasisSpreadOnVariableRate1 0.63 0.92 0.75 3532 DebtInstrumentInterestRateStatedPercentage 1.00 1.00 1.00 5174933

LineOfCreditFacilityMaximumBorrowingCapacity 0.43 0.89 0.58 1346

                               micro avg       1.00      1.00      1.00   5179811
                               macro avg       0.69      0.94      0.78   5179811
                            weighted avg       1.00      1.00      1.00   5179811

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 192
  • eval_batch_size: 192
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Classification Report
0.0097 1.3514 500 0.0026 0.9991 0.9991 0.9990 0.9991 precision recall f1-score support
DebtInstrumentBasisSpreadOnVariableRate1       0.57      0.89      0.70      3532

DebtInstrumentInterestRateStatedPercentage 1.00 1.00 1.00 5174933 LineOfCreditFacilityMaximumBorrowingCapacity 0.45 0.79 0.57 1346

                               micro avg       1.00      1.00      1.00   5179811
                               macro avg       0.67      0.89      0.76   5179811
                            weighted avg       1.00      1.00      1.00   5179811

| | 0.0064 | 2.7027 | 1000 | 0.0026 | 0.9991 | 0.9991 | 0.9990 | 0.9990 | precision recall f1-score support

DebtInstrumentBasisSpreadOnVariableRate1       0.59      0.92      0.72      3532

DebtInstrumentInterestRateStatedPercentage 1.00 1.00 1.00 5174933 LineOfCreditFacilityMaximumBorrowingCapacity 0.42 0.85 0.57 1346

                               micro avg       1.00      1.00      1.00   5179811
                               macro avg       0.67      0.92      0.76   5179811
                            weighted avg       1.00      1.00      1.00   5179811

| | 0.0044 | 4.0541 | 1500 | 0.0027 | 0.9992 | 0.9992 | 0.9991 | 0.9991 | precision recall f1-score support

DebtInstrumentBasisSpreadOnVariableRate1       0.63      0.92      0.75      3532

DebtInstrumentInterestRateStatedPercentage 1.00 1.00 1.00 5174933 LineOfCreditFacilityMaximumBorrowingCapacity 0.43 0.89 0.58 1346

                               micro avg       1.00      1.00      1.00   5179811
                               macro avg       0.69      0.94      0.78   5179811
                            weighted avg       1.00      1.00      1.00   5179811

|

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.20.3