marksusol/distilroberta-base-finetuned-ner
This model is a fine-tuned version of distilbert/distilroberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0050
- Validation Loss: 0.0060
- Train Precision: 0.9435
- Train Recall: 0.9716
- Train F1: 0.9705
- Train Accuracy: 0.9988
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1686, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch |
---|---|---|---|---|---|---|
0.0643 | 0.0085 | 0.9223 | 0.9608 | 0.9593 | 0.9984 | 0 |
0.0066 | 0.0072 | 0.9303 | 0.9707 | 0.9690 | 0.9985 | 1 |
0.0050 | 0.0060 | 0.9435 | 0.9716 | 0.9705 | 0.9988 | 2 |
Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 27
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for marksusol/distilroberta-base-finetuned-ner
Base model
distilbert/distilroberta-base