manu's picture
Update README.md
4610b8c verified
metadata
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - mteb
model-index:
  - name: sentence_croissant_alpha_v0.2
    results:
      - task:
          type: Clustering
        dataset:
          type: lyon-nlp/alloprof
          name: MTEB AlloProfClusteringP2P
          config: default
          split: test
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
        metrics:
          - type: v_measure
            value: 59.14629497199997
      - task:
          type: Clustering
        dataset:
          type: lyon-nlp/alloprof
          name: MTEB AlloProfClusteringS2S
          config: default
          split: test
          revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b
        metrics:
          - type: v_measure
            value: 36.450870830351036
      - task:
          type: Reranking
        dataset:
          type: lyon-nlp/mteb-fr-reranking-alloprof-s2p
          name: MTEB AlloprofReranking
          config: default
          split: test
          revision: e40c8a63ce02da43200eccb5b0846fcaa888f562
        metrics:
          - type: map
            value: 67.23549444979429
          - type: mrr
            value: 68.49382830276612
      - task:
          type: Retrieval
        dataset:
          type: lyon-nlp/alloprof
          name: MTEB AlloprofRetrieval
          config: default
          split: test
          revision: 2df7bee4080bedf2e97de3da6bd5c7bc9fc9c4d2
        metrics:
          - type: map_at_1
            value: 30.285
          - type: map_at_10
            value: 41.724
          - type: map_at_100
            value: 42.696
          - type: map_at_1000
            value: 42.739
          - type: map_at_3
            value: 38.68
          - type: map_at_5
            value: 40.474
          - type: mrr_at_1
            value: 30.285
          - type: mrr_at_10
            value: 41.724
          - type: mrr_at_100
            value: 42.696
          - type: mrr_at_1000
            value: 42.739
          - type: mrr_at_3
            value: 38.68
          - type: mrr_at_5
            value: 40.474
          - type: ndcg_at_1
            value: 30.285
          - type: ndcg_at_10
            value: 47.687000000000005
          - type: ndcg_at_100
            value: 52.580000000000005
          - type: ndcg_at_1000
            value: 53.738
          - type: ndcg_at_3
            value: 41.439
          - type: ndcg_at_5
            value: 44.67
          - type: precision_at_1
            value: 30.285
          - type: precision_at_10
            value: 6.657
          - type: precision_at_100
            value: 0.898
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 16.477
          - type: precision_at_5
            value: 11.454
          - type: recall_at_1
            value: 30.285
          - type: recall_at_10
            value: 66.572
          - type: recall_at_100
            value: 89.819
          - type: recall_at_1000
            value: 98.955
          - type: recall_at_3
            value: 49.43
          - type: recall_at_5
            value: 57.27100000000001
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (fr)
          config: fr
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 36.484
          - type: f1
            value: 36.358267416839176
      - task:
          type: Retrieval
        dataset:
          type: maastrichtlawtech/bsard
          name: MTEB BSARDRetrieval
          config: default
          split: test
          revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59
        metrics:
          - type: map_at_1
            value: 0.44999999999999996
          - type: map_at_10
            value: 1.184
          - type: map_at_100
            value: 1.5939999999999999
          - type: map_at_1000
            value: 1.6680000000000001
          - type: map_at_3
            value: 0.901
          - type: map_at_5
            value: 1.014
          - type: mrr_at_1
            value: 0.44999999999999996
          - type: mrr_at_10
            value: 1.184
          - type: mrr_at_100
            value: 1.5939999999999999
          - type: mrr_at_1000
            value: 1.6680000000000001
          - type: mrr_at_3
            value: 0.901
          - type: mrr_at_5
            value: 1.014
          - type: ndcg_at_1
            value: 0.44999999999999996
          - type: ndcg_at_10
            value: 1.746
          - type: ndcg_at_100
            value: 4.271
          - type: ndcg_at_1000
            value: 6.662
          - type: ndcg_at_3
            value: 1.126
          - type: ndcg_at_5
            value: 1.32
          - type: precision_at_1
            value: 0.44999999999999996
          - type: precision_at_10
            value: 0.36
          - type: precision_at_100
            value: 0.167
          - type: precision_at_1000
            value: 0.036000000000000004
          - type: precision_at_3
            value: 0.601
          - type: precision_at_5
            value: 0.44999999999999996
          - type: recall_at_1
            value: 0.44999999999999996
          - type: recall_at_10
            value: 3.604
          - type: recall_at_100
            value: 16.667
          - type: recall_at_1000
            value: 36.486000000000004
          - type: recall_at_3
            value: 1.802
          - type: recall_at_5
            value: 2.252
      - task:
          type: Clustering
        dataset:
          type: lyon-nlp/clustering-hal-s2s
          name: MTEB HALClusteringS2S
          config: default
          split: test
          revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915
        metrics:
          - type: v_measure
            value: 24.970553942854256
      - task:
          type: Clustering
        dataset:
          type: mlsum
          name: MTEB MLSUMClusteringP2P
          config: default
          split: test
          revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
        metrics:
          - type: v_measure
            value: 42.48794423025542
      - task:
          type: Clustering
        dataset:
          type: mlsum
          name: MTEB MLSUMClusteringS2S
          config: default
          split: test
          revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7
        metrics:
          - type: v_measure
            value: 34.44830504100088
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (fr)
          config: fr
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 88.96335734419041
          - type: f1
            value: 88.77543132157024
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (fr)
          config: fr
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 67.76072658941435
          - type: f1
            value: 47.98533031010631
      - task:
          type: Classification
        dataset:
          type: masakhane/masakhanews
          name: MTEB MasakhaNEWSClassification (fra)
          config: fra
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: accuracy
            value: 73.17535545023696
          - type: f1
            value: 69.07397342867827
      - task:
          type: Clustering
        dataset:
          type: masakhane/masakhanews
          name: MTEB MasakhaNEWSClusteringP2P (fra)
          config: fra
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: v_measure
            value: 47.584542055968335
      - task:
          type: Clustering
        dataset:
          type: masakhane/masakhanews
          name: MTEB MasakhaNEWSClusteringS2S (fra)
          config: fra
          split: test
          revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
        metrics:
          - type: v_measure
            value: 33.58141573894578
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (fr)
          config: fr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.29791526563551
          - type: f1
            value: 64.11383858035595
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (fr)
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.7014122394082
          - type: f1
            value: 71.28396788755553
      - task:
          type: Retrieval
        dataset:
          type: jinaai/mintakaqa
          name: MTEB MintakaRetrieval (fr)
          config: fr
          split: test
          revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e
        metrics:
          - type: map_at_1
            value: 14.824000000000002
          - type: map_at_10
            value: 23.217
          - type: map_at_100
            value: 24.484
          - type: map_at_1000
            value: 24.571
          - type: map_at_3
            value: 20.762
          - type: map_at_5
            value: 22.121
          - type: mrr_at_1
            value: 14.824000000000002
          - type: mrr_at_10
            value: 23.217
          - type: mrr_at_100
            value: 24.484
          - type: mrr_at_1000
            value: 24.571
          - type: mrr_at_3
            value: 20.762
          - type: mrr_at_5
            value: 22.121
          - type: ndcg_at_1
            value: 14.824000000000002
          - type: ndcg_at_10
            value: 27.876
          - type: ndcg_at_100
            value: 34.53
          - type: ndcg_at_1000
            value: 37.153999999999996
          - type: ndcg_at_3
            value: 22.746
          - type: ndcg_at_5
            value: 25.192999999999998
          - type: precision_at_1
            value: 14.824000000000002
          - type: precision_at_10
            value: 4.279
          - type: precision_at_100
            value: 0.75
          - type: precision_at_1000
            value: 0.096
          - type: precision_at_3
            value: 9.5
          - type: precision_at_5
            value: 6.888
          - type: recall_at_1
            value: 14.824000000000002
          - type: recall_at_10
            value: 42.793
          - type: recall_at_100
            value: 75.02
          - type: recall_at_1000
            value: 96.274
          - type: recall_at_3
            value: 28.500999999999998
          - type: recall_at_5
            value: 34.439
      - task:
          type: PairClassification
        dataset:
          type: GEM/opusparcus
          name: MTEB OpusparcusPC (fr)
          config: fr
          split: test
          revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
        metrics:
          - type: cos_sim_accuracy
            value: 82.56130790190736
          - type: cos_sim_ap
            value: 93.47537508242819
          - type: cos_sim_f1
            value: 87.60250844187169
          - type: cos_sim_precision
            value: 85.17823639774859
          - type: cos_sim_recall
            value: 90.16881827209534
          - type: dot_accuracy
            value: 81.06267029972753
          - type: dot_ap
            value: 91.67254760894009
          - type: dot_f1
            value: 87.07172224760164
          - type: dot_precision
            value: 80.62605752961083
          - type: dot_recall
            value: 94.63753723932473
          - type: euclidean_accuracy
            value: 81.19891008174388
          - type: euclidean_ap
            value: 93.11746326702661
          - type: euclidean_f1
            value: 86.52278177458035
          - type: euclidean_precision
            value: 83.6734693877551
          - type: euclidean_recall
            value: 89.57298907646475
          - type: manhattan_accuracy
            value: 81.06267029972753
          - type: manhattan_ap
            value: 93.10511956552851
          - type: manhattan_f1
            value: 86.62175168431185
          - type: manhattan_precision
            value: 84.03361344537815
          - type: manhattan_recall
            value: 89.37437934458788
          - type: max_accuracy
            value: 82.56130790190736
          - type: max_ap
            value: 93.47537508242819
          - type: max_f1
            value: 87.60250844187169
      - task:
          type: PairClassification
        dataset:
          type: paws-x
          name: MTEB PawsX (fr)
          config: fr
          split: test
          revision: 8a04d940a42cd40658986fdd8e3da561533a3646
        metrics:
          - type: cos_sim_accuracy
            value: 64.7
          - type: cos_sim_ap
            value: 66.97936856243149
          - type: cos_sim_f1
            value: 64.10698878343399
          - type: cos_sim_precision
            value: 52.50883392226149
          - type: cos_sim_recall
            value: 82.281284606866
          - type: dot_accuracy
            value: 55.7
          - type: dot_ap
            value: 49.248259184437195
          - type: dot_f1
            value: 62.51298026998961
          - type: dot_precision
            value: 45.468277945619334
          - type: dot_recall
            value: 100
          - type: euclidean_accuracy
            value: 65.14999999999999
          - type: euclidean_ap
            value: 67.67376405881289
          - type: euclidean_f1
            value: 64.10034602076125
          - type: euclidean_precision
            value: 52.59048970901349
          - type: euclidean_recall
            value: 82.05980066445183
          - type: manhattan_accuracy
            value: 65.2
          - type: manhattan_ap
            value: 67.68415171194316
          - type: manhattan_f1
            value: 64.16899163013153
          - type: manhattan_precision
            value: 50.12453300124533
          - type: manhattan_recall
            value: 89.14728682170544
          - type: max_accuracy
            value: 65.2
          - type: max_ap
            value: 67.68415171194316
          - type: max_f1
            value: 64.16899163013153
      - task:
          type: STS
        dataset:
          type: Lajavaness/SICK-fr
          name: MTEB SICKFr
          config: default
          split: test
          revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a
        metrics:
          - type: cos_sim_pearson
            value: 77.68761269197373
          - type: cos_sim_spearman
            value: 69.66744624141576
          - type: euclidean_pearson
            value: 72.05200050489465
          - type: euclidean_spearman
            value: 68.04895470259305
          - type: manhattan_pearson
            value: 72.16693522711834
          - type: manhattan_spearman
            value: 68.12086601967899
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (fr)
          config: fr
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 75.11874053715779
          - type: cos_sim_spearman
            value: 78.68085137779333
          - type: euclidean_pearson
            value: 68.83921367763453
          - type: euclidean_spearman
            value: 71.35148956255736
          - type: manhattan_pearson
            value: 69.46950072200525
          - type: manhattan_spearman
            value: 71.66493261411941
      - task:
          type: STS
        dataset:
          type: PhilipMay/stsb_multi_mt
          name: MTEB STSBenchmarkMultilingualSTS (fr)
          config: fr
          split: test
          revision: 93d57ef91790589e3ce9c365164337a8a78b7632
        metrics:
          - type: cos_sim_pearson
            value: 78.09242108846412
          - type: cos_sim_spearman
            value: 76.38442769094321
          - type: euclidean_pearson
            value: 76.19649405196662
          - type: euclidean_spearman
            value: 75.95441973818816
          - type: manhattan_pearson
            value: 76.13548797312832
          - type: manhattan_spearman
            value: 75.93264073187262
      - task:
          type: Summarization
        dataset:
          type: lyon-nlp/summarization-summeval-fr-p2p
          name: MTEB SummEvalFr
          config: default
          split: test
          revision: b385812de6a9577b6f4d0f88c6a6e35395a94054
        metrics:
          - type: cos_sim_pearson
            value: 30.511451950181858
          - type: cos_sim_spearman
            value: 30.267871792007288
          - type: dot_pearson
            value: 27.428950856263114
          - type: dot_spearman
            value: 26.895658072972395
      - task:
          type: Reranking
        dataset:
          type: lyon-nlp/mteb-fr-reranking-syntec-s2p
          name: MTEB SyntecReranking
          config: default
          split: test
          revision: b205c5084a0934ce8af14338bf03feb19499c84d
        metrics:
          - type: map
            value: 83.16666666666667
          - type: mrr
            value: 83.16666666666667
      - task:
          type: Retrieval
        dataset:
          type: lyon-nlp/mteb-fr-retrieval-syntec-s2p
          name: MTEB SyntecRetrieval
          config: default
          split: test
          revision: aa460cd4d177e6a3c04fcd2affd95e8243289033
        metrics:
          - type: map_at_1
            value: 61
          - type: map_at_10
            value: 71.863
          - type: map_at_100
            value: 72.115
          - type: map_at_1000
            value: 72.115
          - type: map_at_3
            value: 69
          - type: map_at_5
            value: 70.95
          - type: mrr_at_1
            value: 61
          - type: mrr_at_10
            value: 71.863
          - type: mrr_at_100
            value: 72.115
          - type: mrr_at_1000
            value: 72.115
          - type: mrr_at_3
            value: 69
          - type: mrr_at_5
            value: 70.95
          - type: ndcg_at_1
            value: 61
          - type: ndcg_at_10
            value: 77.666
          - type: ndcg_at_100
            value: 78.63900000000001
          - type: ndcg_at_1000
            value: 78.63900000000001
          - type: ndcg_at_3
            value: 71.809
          - type: ndcg_at_5
            value: 75.422
          - type: precision_at_1
            value: 61
          - type: precision_at_10
            value: 9.6
          - type: precision_at_100
            value: 1
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 26.667
          - type: precision_at_5
            value: 17.8
          - type: recall_at_1
            value: 61
          - type: recall_at_10
            value: 96
          - type: recall_at_100
            value: 100
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 80
          - type: recall_at_5
            value: 89
      - task:
          type: Retrieval
        dataset:
          type: jinaai/xpqa
          name: MTEB XPQARetrieval (fr)
          config: fr
          split: test
          revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f
        metrics:
          - type: map_at_1
            value: 37.736999999999995
          - type: map_at_10
            value: 57.842000000000006
          - type: map_at_100
            value: 59.373
          - type: map_at_1000
            value: 59.426
          - type: map_at_3
            value: 51.598
          - type: map_at_5
            value: 55.279999999999994
          - type: mrr_at_1
            value: 59.68
          - type: mrr_at_10
            value: 66.71000000000001
          - type: mrr_at_100
            value: 67.28699999999999
          - type: mrr_at_1000
            value: 67.301
          - type: mrr_at_3
            value: 64.486
          - type: mrr_at_5
            value: 65.888
          - type: ndcg_at_1
            value: 59.68
          - type: ndcg_at_10
            value: 64.27199999999999
          - type: ndcg_at_100
            value: 69.429
          - type: ndcg_at_1000
            value: 70.314
          - type: ndcg_at_3
            value: 58.569
          - type: ndcg_at_5
            value: 60.272999999999996
          - type: precision_at_1
            value: 59.68
          - type: precision_at_10
            value: 15.113
          - type: precision_at_100
            value: 1.941
          - type: precision_at_1000
            value: 0.20600000000000002
          - type: precision_at_3
            value: 35.514
          - type: precision_at_5
            value: 25.367
          - type: recall_at_1
            value: 37.736999999999995
          - type: recall_at_10
            value: 73.458
          - type: recall_at_100
            value: 93.554
          - type: recall_at_1000
            value: 99.346
          - type: recall_at_3
            value: 55.774
          - type: recall_at_5
            value: 63.836000000000006

{MODEL_NAME}

This is a sentence-transformers model: It maps sentences & paragraphs to a 2048 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 350 with parameters:

{'batch_size': 512, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

__main__.MultipleNegativesRankingLoss_with_logging

Parameters of the fit()-Method:

{
    "epochs": 1,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 50,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: LlamaModel 
  (1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Citing & Authors