metadata
library_name: transformers
license: apache-2.0
base_model: imrajeshkr/distilhubert-finetuned-speech_commands
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- precision
- recall
- f1
model-index:
- name: distilhubert-finetuned-speech_commands-finetuned-alphabets-classification
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: audiofolder
type: audiofolder
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.9388888888888889
- name: Recall
type: recall
value: 0.9197530864197531
- name: F1
type: f1
value: 0.9185068018401353
distilhubert-finetuned-speech_commands-finetuned-alphabets-classification
This model is a fine-tuned version of imrajeshkr/distilhubert-finetuned-speech_commands on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4165
- Precision: 0.9389
- Recall: 0.9198
- F1: 0.9185
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
2.8182 | 1.0 | 102 | 2.7342 | 0.1778 | 0.2099 | 0.1414 |
2.0231 | 2.0 | 204 | 1.8554 | 0.4450 | 0.5864 | 0.4860 |
1.4512 | 3.0 | 306 | 1.3438 | 0.6495 | 0.6914 | 0.6388 |
1.093 | 4.0 | 408 | 0.9750 | 0.8435 | 0.8333 | 0.8206 |
0.7937 | 5.0 | 510 | 0.7371 | 0.9180 | 0.8951 | 0.8928 |
0.5933 | 6.0 | 612 | 0.5982 | 0.9125 | 0.8889 | 0.8865 |
0.4418 | 7.0 | 714 | 0.5049 | 0.9293 | 0.9074 | 0.9053 |
0.3909 | 8.0 | 816 | 0.4556 | 0.9398 | 0.9198 | 0.9178 |
0.3192 | 9.0 | 918 | 0.4305 | 0.9393 | 0.9198 | 0.9188 |
0.306 | 10.0 | 1020 | 0.4165 | 0.9389 | 0.9198 | 0.9185 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.2.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0