torgo_xlsr_finetune_M01
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8655
- Wer: 0.3060
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
3.4346 | 0.89 | 1000 | 3.3570 | 1.0 |
1.3708 | 1.79 | 2000 | 1.5774 | 0.7569 |
0.7783 | 2.69 | 3000 | 1.6546 | 0.6103 |
0.5676 | 3.58 | 4000 | 1.3849 | 0.5216 |
0.4476 | 4.48 | 5000 | 1.5294 | 0.5 |
0.4264 | 5.37 | 6000 | 1.5832 | 0.4534 |
0.3434 | 6.27 | 7000 | 1.4397 | 0.4233 |
0.3371 | 7.16 | 8000 | 1.4635 | 0.4129 |
0.3268 | 8.06 | 9000 | 1.5989 | 0.3828 |
0.2623 | 8.95 | 10000 | 1.5145 | 0.3836 |
0.2755 | 9.85 | 11000 | 1.6695 | 0.3569 |
0.2304 | 10.74 | 12000 | 1.4313 | 0.3397 |
0.2052 | 11.64 | 13000 | 1.4242 | 0.3466 |
0.199 | 12.53 | 14000 | 1.7287 | 0.3405 |
0.2124 | 13.43 | 15000 | 1.4715 | 0.3086 |
0.1858 | 14.32 | 16000 | 1.6835 | 0.3086 |
0.1667 | 15.22 | 17000 | 1.6080 | 0.3233 |
0.1551 | 16.11 | 18000 | 1.6151 | 0.3293 |
0.1638 | 17.01 | 19000 | 1.5014 | 0.3034 |
0.1584 | 17.9 | 20000 | 1.7036 | 0.3233 |
0.1486 | 18.8 | 21000 | 1.6527 | 0.3207 |
0.1337 | 19.7 | 22000 | 1.6947 | 0.3181 |
0.201 | 20.59 | 23000 | 1.9110 | 0.3431 |
0.2058 | 21.49 | 24000 | 1.6260 | 0.3560 |
0.1776 | 22.38 | 25000 | 1.8602 | 0.3483 |
0.1779 | 23.28 | 26000 | 2.0418 | 0.3578 |
0.1401 | 24.17 | 27000 | 2.0262 | 0.3371 |
0.1533 | 25.07 | 28000 | 1.7442 | 0.3069 |
0.1476 | 25.96 | 29000 | 1.7283 | 0.3190 |
0.1414 | 26.86 | 30000 | 1.7655 | 0.3181 |
0.1522 | 27.75 | 31000 | 1.6772 | 0.3103 |
0.146 | 28.65 | 32000 | 1.4420 | 0.3 |
0.1363 | 29.54 | 33000 | 1.5955 | 0.3276 |
0.1306 | 30.44 | 34000 | 1.7269 | 0.3336 |
0.1241 | 31.33 | 35000 | 1.7725 | 0.3216 |
0.1155 | 32.23 | 36000 | 1.8232 | 0.3086 |
0.117 | 33.12 | 37000 | 1.8145 | 0.3052 |
0.0973 | 34.02 | 38000 | 2.0621 | 0.3216 |
0.1181 | 34.91 | 39000 | 1.6758 | 0.2957 |
0.1063 | 35.81 | 40000 | 1.6431 | 0.2983 |
0.094 | 36.71 | 41000 | 1.7967 | 0.3069 |
0.0937 | 37.6 | 42000 | 1.8469 | 0.3052 |
0.0931 | 38.5 | 43000 | 1.8364 | 0.3017 |
0.0897 | 39.39 | 44000 | 1.8655 | 0.3060 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.13.3
- Downloads last month
- 16
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.