Improve model card: Add project page, tags, and sample usage (#2)
Browse files- Improve model card: Add project page, tags, and sample usage (6bd771919f05b8bf356b129b8cd2bdf06a06634d)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -5,17 +5,20 @@ datasets:
|
|
5 |
- luzimu/WebGen-Bench
|
6 |
language:
|
7 |
- en
|
|
|
8 |
license: mit
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
-
library_name: transformers
|
12 |
pipeline_tag: text-generation
|
|
|
|
|
13 |
---
|
14 |
|
15 |
# WebGen-LM
|
16 |
|
17 |
WebGen-LM is trained using the Bolt.diy trajectories generated from a subset of the training set of WebGen-Bench (🤗 [luzimu/WebGen-Bench](https://huggingface.co/datasets/luzimu/WebGen-Bench)). It has been introduced in the paper [WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch](https://arxiv.org/abs/2505.03733).
|
18 |
|
|
|
19 |
The training data and code can be found at [WebGen-Bench (Github)](https://github.com/mnluzimu/WebGen-Bench).
|
20 |
|
21 |
The WebGen-LM family of models are as follows:
|
@@ -26,11 +29,52 @@ The WebGen-LM family of models are as follows:
|
|
26 |
|WebGen-LM-14B | 🤗 [luzimu/WebGen-LM-14B](https://huggingface.co/luzimu/WebGen-LM-14B) |
|
27 |
|WebGen-LM-32B | 🤗 [luzimu/WebGen-LM-32B](https://huggingface.co/luzimu/WebGen-LM-32B) |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
## Performance on WebGen-Bench
|
30 |
|
31 |

|
32 |
|
33 |
-
|
34 |
## Citation
|
35 |
|
36 |
If you find our project useful, please cite:
|
@@ -44,4 +88,5 @@ If you find our project useful, please cite:
|
|
44 |
archivePrefix={arXiv},
|
45 |
primaryClass={cs.CL},
|
46 |
url={https://arxiv.org/abs/2505.03733},
|
47 |
-
}
|
|
|
|
5 |
- luzimu/WebGen-Bench
|
6 |
language:
|
7 |
- en
|
8 |
+
library_name: transformers
|
9 |
license: mit
|
10 |
metrics:
|
11 |
- accuracy
|
|
|
12 |
pipeline_tag: text-generation
|
13 |
+
tags:
|
14 |
+
- code-generation
|
15 |
---
|
16 |
|
17 |
# WebGen-LM
|
18 |
|
19 |
WebGen-LM is trained using the Bolt.diy trajectories generated from a subset of the training set of WebGen-Bench (🤗 [luzimu/WebGen-Bench](https://huggingface.co/datasets/luzimu/WebGen-Bench)). It has been introduced in the paper [WebGen-Bench: Evaluating LLMs on Generating Interactive and Functional Websites from Scratch](https://arxiv.org/abs/2505.03733).
|
20 |
|
21 |
+
Project page: https://webgen-bench.github.io/
|
22 |
The training data and code can be found at [WebGen-Bench (Github)](https://github.com/mnluzimu/WebGen-Bench).
|
23 |
|
24 |
The WebGen-LM family of models are as follows:
|
|
|
29 |
|WebGen-LM-14B | 🤗 [luzimu/WebGen-LM-14B](https://huggingface.co/luzimu/WebGen-LM-14B) |
|
30 |
|WebGen-LM-32B | 🤗 [luzimu/WebGen-LM-32B](https://huggingface.co/luzimu/WebGen-LM-32B) |
|
31 |
|
32 |
+
## Sample Usage
|
33 |
+
|
34 |
+
You can use this model with the `transformers` library for text generation tasks, specifically for code generation based on instructions.
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
38 |
+
import torch
|
39 |
+
|
40 |
+
model_id = "luzimu/WebGen-LM-32B"
|
41 |
+
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
43 |
+
model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
model_id,
|
45 |
+
torch_dtype=torch.bfloat16,
|
46 |
+
device_map="auto"
|
47 |
+
)
|
48 |
+
|
49 |
+
messages = [
|
50 |
+
{"role": "user", "content": "Write HTML, CSS, and JavaScript for a simple to-do list web application. The list should allow users to add and remove items."},
|
51 |
+
]
|
52 |
+
|
53 |
+
chat_input = tokenizer.apply_chat_template(
|
54 |
+
messages,
|
55 |
+
tokenize=False,
|
56 |
+
add_generation_prompt=True
|
57 |
+
)
|
58 |
+
|
59 |
+
model_inputs = tokenizer([chat_input], return_tensors="pt").to(model.device)
|
60 |
+
|
61 |
+
generated_ids = model.generate(
|
62 |
+
model_inputs.input_ids,
|
63 |
+
max_new_tokens=2048,
|
64 |
+
do_sample=True,
|
65 |
+
temperature=0.7,
|
66 |
+
top_p=0.95
|
67 |
+
)
|
68 |
+
|
69 |
+
# Decode only the newly generated tokens
|
70 |
+
output_text = tokenizer.decode(generated_ids[0][model_inputs.input_ids.shape[1]:], skip_special_tokens=False)
|
71 |
+
print(output_text)
|
72 |
+
```
|
73 |
+
|
74 |
## Performance on WebGen-Bench
|
75 |
|
76 |

|
77 |
|
|
|
78 |
## Citation
|
79 |
|
80 |
If you find our project useful, please cite:
|
|
|
88 |
archivePrefix={arXiv},
|
89 |
primaryClass={cs.CL},
|
90 |
url={https://arxiv.org/abs/2505.03733},
|
91 |
+
}
|
92 |
+
```
|