pos_thai / README.md
lunarlist's picture
fix example
54b5a91
|
raw
history blame
2.42 kB
metadata
license: apache-2.0
base_model: Geotrend/bert-base-th-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: pos_thai
    results: []
language: th
widget:
  - text: ภาษาไทย ง่าย นิดเดียว
    example_title: test1
  - text: >-
      หนุ่ม เลี้ยง ควาย ใน อิสราเอล เผย รายได้ ต่อ เดือน ทำงาน 4 ปี สร้าง บ้าน
      ได้ 1 หลัง
    example_title: test2
datasets:
  - lunarlist/tagging_thai

pos_thai

This model is a fine-tuned version of Geotrend/bert-base-th-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0935
  • Precision: 0.9525
  • Recall: 0.9540
  • F1: 0.9533
  • Accuracy: 0.9693

Model description

This model is train on thai pos_tag datasets to help with pos tagging in Thai language.

Example

from transformers import AutoModelForTokenClassification, AutoTokenizer, TokenClassificationPipeline

model = AutoModelForTokenClassification.from_pretrained("lunarlist/pos_thai")
tokenizer = AutoTokenizer.from_pretrained("lunarlist/pos_thai")

pipeline = TokenClassificationPipeline(model=model, tokenizer=tokenizer, grouped_entities=True)
outputs = pipeline("ภาษาไทย ง่าย นิดเดียว")
print(outputs)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1124 1.0 7344 0.1048 0.9505 0.9478 0.9492 0.9670
0.0866 2.0 14688 0.0935 0.9525 0.9540 0.9533 0.9693

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1