|
--- |
|
license: mit |
|
base_model: MoritzLaurer/bge-m3-zeroshot-v2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: nli-finetuning-laurer-immigration-classification |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nli-finetuning-laurer-immigration-classification |
|
|
|
This model is a fine-tuned version of [MoritzLaurer/bge-m3-zeroshot-v2.0](https://huggingface.co/MoritzLaurer/bge-m3-zeroshot-v2.0) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5578 |
|
- Accuracy: 0.9032 |
|
- F1 Macro: 0.8969 |
|
- Accuracy Balanced: 0.8913 |
|
- F1 Micro: 0.9032 |
|
- Precision Macro: 0.9048 |
|
- Recall Macro: 0.8913 |
|
- Precision Micro: 0.9032 |
|
- Recall Micro: 0.9032 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 80 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.25 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Accuracy Balanced | F1 Micro | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| |
|
| No log | 1.0 | 151 | 0.3342 | 0.8763 | 0.8679 | 0.8619 | 0.8763 | 0.8769 | 0.8619 | 0.8763 | 0.8763 | |
|
| No log | 2.0 | 302 | 0.4733 | 0.8710 | 0.8680 | 0.8793 | 0.8710 | 0.8644 | 0.8793 | 0.8710 | 0.8710 | |
|
| No log | 3.0 | 453 | 0.5168 | 0.8978 | 0.8895 | 0.8796 | 0.8978 | 0.9073 | 0.8796 | 0.8978 | 0.8978 | |
|
| 0.4084 | 4.0 | 604 | 0.5300 | 0.8871 | 0.8813 | 0.8804 | 0.8871 | 0.8823 | 0.8804 | 0.8871 | 0.8871 | |
|
| 0.4084 | 5.0 | 755 | 0.5578 | 0.9032 | 0.8969 | 0.8913 | 0.9032 | 0.9048 | 0.8913 | 0.9032 | 0.9032 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 2.14.7 |
|
- Tokenizers 0.13.3 |
|
|