xls-r-fleurs_zu-run4
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the FLEURS (zu) dataset. It achieves the following results:
- Wer (Validation): 67.79%
- Wer (Test): 67.97%
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer (Train) |
---|---|---|---|---|
13.7467 | 0.58 | 100 | 4.7915 | 1.0 |
3.7307 | 1.17 | 200 | 3.0551 | 1.0 |
3.0005 | 1.75 | 300 | 2.9790 | 1.0 |
2.5651 | 2.33 | 400 | 1.5112 | 1.0 |
0.7838 | 2.91 | 500 | 0.7741 | 0.7796 |
0.4975 | 3.5 | 600 | 0.7511 | 0.7585 |
0.4131 | 4.08 | 700 | 0.6563 | 0.7023 |
0.3097 | 4.66 | 800 | 0.5946 | 0.6779 |
0.2777 | 5.24 | 900 | 0.6919 | 0.6950 |
0.2548 | 5.83 | 1000 | 0.6429 | 0.6734 |
0.2172 | 6.41 | 1100 | 0.6553 | 0.6643 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.