|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:3560698 |
|
- loss:ModifiedMatryoshkaLoss |
|
base_model: google-bert/bert-base-multilingual-cased |
|
widget: |
|
- source_sentence: This is a mine in Zimbabwe right now. |
|
sentences: |
|
- Esta es una mina de Zimbabwe en este momento. |
|
- Transformar eso en una respuesta con forma matemática. |
|
- Centrarse en el liderazgo, la diplomacia y el diseño institucional ayuda también |
|
a explicar los intentos de paz que fracasan, o que no perduran. |
|
- source_sentence: '"You want me to deliver human rights throughout my global supply |
|
chain.' |
|
sentences: |
|
- '"Quieres que respete los Derechos Humanos en la cadena mundial de suministro.' |
|
- ¿Qué queremos decir cuando decimos que hacemos matemática... ...o que enseñamos |
|
matemática? |
|
- Así que criamos moscas cuyos cerebros fueron salpicados más o menos al azar con |
|
células direccionables por la luz. |
|
- source_sentence: Figure out some of the other options that are much better. |
|
sentences: |
|
- En Kirguistán, en las últimas semanas, ocurrieron niveles de violencia sin precedentes |
|
entre los kirguíes étnicos y los uzbecos étnicos. |
|
- Piensen en otras de las opciones que son mucho mejores. |
|
- La película sale -- la película es una versión en película de la presentación |
|
de las diapositivas que di hace dos noches, excepto que es mucho más entretenida. |
|
- source_sentence: I've become very close with them, and they've welcomed me like |
|
family. |
|
sentences: |
|
- he logrado una relación estrecha con ellos; soy como de la familia. |
|
- O que los oídos se oigan a sí mismos... simplemente es imposible; |
|
- Es un producto farmacéutico. |
|
- source_sentence: All the grayed-out species disappear. |
|
sentences: |
|
- 'Los diamantes: quizá todos hemos oído hablar de la película "Diamante de sangre".' |
|
- Hay un vacío total de capital creativo en Bertie. |
|
- Van a desaparecer todas las especies en gris. |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- negative_mse |
|
model-index: |
|
- name: SentenceTransformer based on google-bert/bert-base-multilingual-cased |
|
results: |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: MSE val en es |
|
type: MSE-val-en-es |
|
metrics: |
|
- type: negative_mse |
|
value: -33.77506732940674 |
|
name: Negative Mse |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: MSE val en pt |
|
type: MSE-val-en-pt |
|
metrics: |
|
- type: negative_mse |
|
value: -34.092217683792114 |
|
name: Negative Mse |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: MSE val en pt br |
|
type: MSE-val-en-pt-br |
|
metrics: |
|
- type: negative_mse |
|
value: -32.07869827747345 |
|
name: Negative Mse |
|
--- |
|
|
|
# SentenceTransformer based on google-bert/bert-base-multilingual-cased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) <!-- at revision 3f076fdb1ab68d5b2880cb87a0886f315b8146f8 --> |
|
- **Maximum Sequence Length:** 128 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("luanafelbarros/bert-en-es-pt-matryoshka_v3") |
|
# Run inference |
|
sentences = [ |
|
'All the grayed-out species disappear.', |
|
'Van a desaparecer todas las especies en gris.', |
|
'Los diamantes: quizá todos hemos oído hablar de la película "Diamante de sangre".', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Knowledge Distillation |
|
|
|
* Datasets: `MSE-val-en-es`, `MSE-val-en-pt` and `MSE-val-en-pt-br` |
|
* Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator) |
|
|
|
| Metric | MSE-val-en-es | MSE-val-en-pt | MSE-val-en-pt-br | |
|
|:-----------------|:--------------|:--------------|:-----------------| |
|
| **negative_mse** | **-33.7751** | **-34.0922** | **-32.0787** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 3,560,698 training samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 25.46 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 26.67 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>And then there are certain conceptual things that can also benefit from hand calculating, but I think they're relatively small in number.</code> | <code>Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos.</code> | <code>[-0.015244179405272007, 0.04601434990763664, -0.052873335778713226, 0.03535117208957672, -0.039562877267599106, ...]</code> | |
|
| <code>One thing I often ask about is ancient Greek and how this relates.</code> | <code>Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona.</code> | <code>[0.0012022971641272306, -0.009590390138328075, -0.032977133989334106, 0.017047710716724396, -0.0028919472824782133, ...]</code> | |
|
| <code>See, the thing we're doing right now is we're forcing people to learn mathematics.</code> | <code>Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas.</code> | <code>[-0.01942082867026329, 0.1043599545955658, 0.009455358609557152, -0.02814248949289322, -0.017036128789186478, ...]</code> | |
|
* Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters: |
|
```json |
|
{ |
|
"loss": "MSELoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 6,974 evaluation samples |
|
* Columns: <code>english</code>, <code>non_english</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | english | non_english | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------| |
|
| type | string | string | list | |
|
| details | <ul><li>min: 4 tokens</li><li>mean: 25.68 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 27.31 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>size: 768 elements</li></ul> | |
|
* Samples: |
|
| english | non_english | label | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Thank you so much, Chris.</code> | <code>Muchas gracias Chris.</code> | <code>[-0.0616779662668705, -0.044504180550575256, -0.032505787909030914, -0.06641441583633423, 0.003981734160333872, ...]</code> | |
|
| <code>And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.</code> | <code>Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido.</code> | <code>[0.011398598551750183, -0.02500401996076107, -0.009884790517389774, 0.009336900897324085, 0.003082842566072941, ...]</code> | |
|
| <code>I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.</code> | <code>He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche.</code> | <code>[-0.03842132166028023, 0.03635749593377113, -0.02491452544927597, -0.0032229204662144184, 0.0003549510147422552, ...]</code> | |
|
* Loss: <code>__main__.ModifiedMatryoshkaLoss</code> with these parameters: |
|
```json |
|
{ |
|
"loss": "MSELoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 200 |
|
- `per_device_eval_batch_size`: 200 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 2 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `label_names`: ['label'] |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 200 |
|
- `per_device_eval_batch_size`: 200 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 2 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: ['label'] |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | MSE-val-en-es_negative_mse | MSE-val-en-pt_negative_mse | MSE-val-en-pt-br_negative_mse | |
|
|:------:|:-----:|:-------------:|:---------------:|:--------------------------:|:--------------------------:|:-----------------------------:| |
|
| 0.0562 | 1000 | 0.0283 | 0.0251 | -22.4432 | -22.0406 | -25.1401 | |
|
| 0.1123 | 2000 | 0.0241 | 0.0227 | -24.1255 | -23.9880 | -24.7731 | |
|
| 0.1685 | 3000 | 0.0224 | 0.0214 | -25.3630 | -25.2889 | -25.4316 | |
|
| 0.2247 | 4000 | 0.0214 | 0.0205 | -27.9225 | -28.0038 | -27.3050 | |
|
| 0.2808 | 5000 | 0.0206 | 0.0199 | -29.4189 | -29.5093 | -28.8545 | |
|
| 0.3370 | 6000 | 0.0202 | 0.0194 | -30.3190 | -30.4212 | -29.4919 | |
|
| 0.3932 | 7000 | 0.0198 | 0.0191 | -31.3278 | -31.4753 | -30.3090 | |
|
| 0.4493 | 8000 | 0.0195 | 0.0188 | -31.4089 | -31.6387 | -30.3325 | |
|
| 0.5055 | 9000 | 0.0193 | 0.0186 | -32.0598 | -32.2536 | -30.9067 | |
|
| 0.5617 | 10000 | 0.0191 | 0.0184 | -32.0989 | -32.2766 | -31.0155 | |
|
| 0.6178 | 11000 | 0.0189 | 0.0183 | -32.2449 | -32.4302 | -30.9863 | |
|
| 0.6740 | 12000 | 0.0187 | 0.0181 | -32.5800 | -32.8070 | -31.2254 | |
|
| 0.7302 | 13000 | 0.0186 | 0.0180 | -32.9225 | -33.1228 | -31.5803 | |
|
| 0.7863 | 14000 | 0.0185 | 0.0179 | -32.9227 | -33.1304 | -31.5169 | |
|
| 0.8425 | 15000 | 0.0184 | 0.0178 | -33.0181 | -33.2681 | -31.5791 | |
|
| 0.8987 | 16000 | 0.0183 | 0.0177 | -33.1309 | -33.3638 | -31.6113 | |
|
| 0.9548 | 17000 | 0.0182 | 0.0176 | -33.1635 | -33.4414 | -31.6507 | |
|
| 1.0110 | 18000 | 0.0181 | 0.0175 | -33.3615 | -33.6376 | -31.8086 | |
|
| 1.0672 | 19000 | 0.018 | 0.0175 | -33.5781 | -33.8775 | -32.0611 | |
|
| 1.1233 | 20000 | 0.0179 | 0.0174 | -33.5645 | -33.8531 | -32.0438 | |
|
| 1.1795 | 21000 | 0.0179 | 0.0173 | -33.6646 | -33.9817 | -32.0500 | |
|
| 1.2357 | 22000 | 0.0179 | 0.0173 | -33.7056 | -34.0088 | -32.1065 | |
|
| 1.2918 | 23000 | 0.0178 | 0.0173 | -33.7397 | -34.0153 | -32.1810 | |
|
| 1.3480 | 24000 | 0.0178 | 0.0172 | -33.7863 | -34.0887 | -32.1103 | |
|
| 1.4042 | 25000 | 0.0177 | 0.0172 | -33.7981 | -34.0863 | -32.1683 | |
|
| 1.4603 | 26000 | 0.0177 | 0.0171 | -33.7458 | -34.0451 | -32.0611 | |
|
| 1.5165 | 27000 | 0.0177 | 0.0171 | -33.7650 | -34.0652 | -32.1565 | |
|
| 1.5727 | 28000 | 0.0176 | 0.0171 | -33.7347 | -34.0446 | -32.0698 | |
|
| 1.6288 | 29000 | 0.0176 | 0.0171 | -33.8011 | -34.1169 | -32.0683 | |
|
| 1.6850 | 30000 | 0.0176 | 0.0170 | -33.7949 | -34.1010 | -32.1128 | |
|
| 1.7412 | 31000 | 0.0176 | 0.0170 | -33.7713 | -34.0857 | -32.1020 | |
|
| 1.7973 | 32000 | 0.0176 | 0.0170 | -33.8393 | -34.1676 | -32.1371 | |
|
| 1.8535 | 33000 | 0.0175 | 0.0170 | -33.7687 | -34.0887 | -32.0748 | |
|
| 1.9097 | 34000 | 0.0175 | 0.0170 | -33.7614 | -34.0854 | -32.0550 | |
|
| 1.9659 | 35000 | 0.0175 | 0.0170 | -33.7751 | -34.0922 | -32.0787 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.46.3 |
|
- PyTorch: 2.5.1+cu121 |
|
- Accelerate: 1.1.1 |
|
- Datasets: 3.1.0 |
|
- Tokenizers: 0.20.3 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |