SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'To evaluate the cost-effectiveness of ED-initiated buprenorphine with peer navigator support compared to enhanced referral to treatment.',
'Concerns about withdrawal precipitation',
'11.1.2 Steering Committee\n\nComposition:\n- Executive Committee members\n- Site investigators\n- Patient/community representatives\n- Key co-investigators\n\nResponsibilities:\n- Protocol revisions\n- Implementation monitoring\n- Recruitment oversight\n- Review of study progress\n- Addressing operational challenges',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 247,936 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 48.16 tokens
- max: 256 tokens
- min: 3 tokens
- mean: 44.76 tokens
- max: 256 tokens
- min: 0.5
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label 10.4 Participant Confidentiality
9.1.1 Data and Safety Monitoring Board (DSMB)
An independent DSMB will be established, consisting of experts in emergency medicine, addiction medicine, biostatistics, and ethics. The DSMB will:
- Review and approve the monitoring plan
- Meet at least annually to review study progress and safety
- Review any serious adverse events
- Make recommendations regarding study continuation or modification0.5
7.1 Randomization
Participants will be randomly assigned in a 1:1 ratio to receive either BUP-NX or XR-NTX using a computer-generated randomization sequence with permuted blocks of varying sizes. Randomization will be stratified by site and by opioid type (short-acting prescription opioids, heroin, or fentanyl as primary opioid of use).10.3 Risk Mitigation
0.5
11.1 Study Leadership and Governance
To examine patient perspectives on intervention acceptability and barriers/facilitators to engagement through qualitative interviews with a subset of participants.
0.5
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0323 | 500 | 0.0107 |
0.0645 | 1000 | 0.0025 |
0.0968 | 1500 | 0.0023 |
0.1291 | 2000 | 0.0023 |
0.1613 | 2500 | 0.0021 |
0.1936 | 3000 | 0.002 |
0.2259 | 3500 | 0.0018 |
0.2581 | 4000 | 0.0018 |
0.2904 | 4500 | 0.0017 |
0.3227 | 5000 | 0.0017 |
0.3549 | 5500 | 0.0017 |
0.3872 | 6000 | 0.0016 |
0.4195 | 6500 | 0.0015 |
0.4517 | 7000 | 0.0016 |
0.4840 | 7500 | 0.0016 |
0.5163 | 8000 | 0.0015 |
0.5485 | 8500 | 0.0015 |
0.5808 | 9000 | 0.0014 |
0.6131 | 9500 | 0.0015 |
0.6453 | 10000 | 0.0015 |
0.6776 | 10500 | 0.0014 |
0.7099 | 11000 | 0.0015 |
0.7421 | 11500 | 0.0013 |
0.7744 | 12000 | 0.0013 |
0.8067 | 12500 | 0.0013 |
0.8389 | 13000 | 0.0013 |
0.8712 | 13500 | 0.0013 |
0.9035 | 14000 | 0.0013 |
0.9357 | 14500 | 0.0013 |
0.9680 | 15000 | 0.0012 |
1.0003 | 15500 | 0.0012 |
1.0325 | 16000 | 0.0011 |
1.0648 | 16500 | 0.0011 |
1.0971 | 17000 | 0.0011 |
1.1293 | 17500 | 0.0011 |
1.1616 | 18000 | 0.0011 |
1.1939 | 18500 | 0.001 |
1.2261 | 19000 | 0.001 |
1.2584 | 19500 | 0.0011 |
1.2907 | 20000 | 0.001 |
1.3229 | 20500 | 0.0011 |
1.3552 | 21000 | 0.001 |
1.3875 | 21500 | 0.001 |
1.4197 | 22000 | 0.001 |
1.4520 | 22500 | 0.001 |
1.4843 | 23000 | 0.001 |
1.5165 | 23500 | 0.0009 |
1.5488 | 24000 | 0.001 |
1.5811 | 24500 | 0.001 |
1.6133 | 25000 | 0.0009 |
1.6456 | 25500 | 0.001 |
1.6779 | 26000 | 0.001 |
1.7101 | 26500 | 0.001 |
1.7424 | 27000 | 0.001 |
1.7747 | 27500 | 0.001 |
1.8069 | 28000 | 0.001 |
1.8392 | 28500 | 0.001 |
1.8715 | 29000 | 0.001 |
1.9037 | 29500 | 0.0009 |
1.9360 | 30000 | 0.0009 |
1.9682 | 30500 | 0.0009 |
2.0005 | 31000 | 0.0009 |
2.0328 | 31500 | 0.0008 |
2.0650 | 32000 | 0.0008 |
2.0973 | 32500 | 0.0007 |
2.1296 | 33000 | 0.0008 |
2.1618 | 33500 | 0.0008 |
2.1941 | 34000 | 0.0008 |
2.2264 | 34500 | 0.0008 |
2.2586 | 35000 | 0.0008 |
2.2909 | 35500 | 0.0008 |
2.3232 | 36000 | 0.0008 |
2.3554 | 36500 | 0.0008 |
2.3877 | 37000 | 0.0008 |
2.4200 | 37500 | 0.0008 |
2.4522 | 38000 | 0.0008 |
2.4845 | 38500 | 0.0008 |
2.5168 | 39000 | 0.0008 |
2.5490 | 39500 | 0.0008 |
2.5813 | 40000 | 0.0007 |
2.6136 | 40500 | 0.0008 |
2.6458 | 41000 | 0.0008 |
2.6781 | 41500 | 0.0007 |
2.7104 | 42000 | 0.0007 |
2.7426 | 42500 | 0.0007 |
2.7749 | 43000 | 0.0008 |
2.8072 | 43500 | 0.0008 |
2.8394 | 44000 | 0.0007 |
2.8717 | 44500 | 0.0008 |
2.9040 | 45000 | 0.0008 |
2.9362 | 45500 | 0.0007 |
2.9685 | 46000 | 0.0007 |
Framework Versions
- Python: 3.13.2
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
HEAL Protocol Embeddings
This model is fine-tuned from all-MiniLM-L6-v2 on HEAL Initiative clinical protocols.
Performance Evaluation
Comparison with OpenAI embeddings:
Metric | OpenAI | Fine-tuned | Change |
---|---|---|---|
Faithfulness | 0.667 | 0.833 | ⬆️ +0.166 |
Answer Relevancy | 0.986 | 0.986 | = |
Context Precision | 1.000 | 1.000 | = |
Context Recall | 1.000 | 0.000 | ⬇️ -1.000 |
Key Findings
- Improved faithfulness to source material
- Maintained high answer relevancy
- Trade-off in context recall
Future Improvements
Retrieval Strategy
- Implement hybrid search combining semantic and keyword matching
- Add re-ranking for better result ordering
Model Architecture
- Experiment with larger base models
- Fine-tune with domain-specific loss functions
Data Processing
- Optimize chunking strategy
- Increase training data diversity
- Downloads last month
- 316
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for lsy9874205/heal-protocol-embeddings
Base model
sentence-transformers/all-MiniLM-L6-v2