|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-base-1k-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: BaseModel-leaf-disease-convnextv2-base-1k-224-0_1_2_3_4 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8738317757009346 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BaseModel-leaf-disease-convnextv2-base-1k-224-0_1_2_3_4 |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-base-1k-224](https://huggingface.co/facebook/convnextv2-base-1k-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3737 |
|
- Accuracy: 0.8738 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 300 |
|
- eval_batch_size: 300 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 1200 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 16 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.9249 | 0.98 | 16 | 0.6211 | 0.7752 | |
|
| 0.5028 | 1.97 | 32 | 0.4815 | 0.8411 | |
|
| 0.4421 | 2.95 | 48 | 0.4503 | 0.8533 | |
|
| 0.4009 | 4.0 | 65 | 0.4187 | 0.8607 | |
|
| 0.3821 | 4.98 | 81 | 0.4080 | 0.8626 | |
|
| 0.3672 | 5.97 | 97 | 0.3952 | 0.8626 | |
|
| 0.3544 | 6.95 | 113 | 0.3927 | 0.8701 | |
|
| 0.3287 | 8.0 | 130 | 0.3848 | 0.8734 | |
|
| 0.327 | 8.98 | 146 | 0.3877 | 0.8696 | |
|
| 0.3239 | 9.97 | 162 | 0.3783 | 0.8701 | |
|
| 0.3113 | 10.95 | 178 | 0.3746 | 0.8724 | |
|
| 0.3146 | 12.0 | 195 | 0.3736 | 0.8734 | |
|
| 0.3031 | 12.98 | 211 | 0.3747 | 0.8692 | |
|
| 0.3075 | 13.97 | 227 | 0.3752 | 0.8738 | |
|
| 0.3071 | 14.95 | 243 | 0.3759 | 0.8762 | |
|
| 0.3028 | 15.75 | 256 | 0.3737 | 0.8738 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.1 |
|
|