Model Card of lmqg/t5-large-tweetqa-qag
This model is fine-tuned version of t5-large for question & answer pair generation task on the lmqg/qag_tweetqa (dataset_name: default) via lmqg
.
Overview
- Language model: t5-large
- Language: en
- Training data: lmqg/qag_tweetqa (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="en", model="lmqg/t5-large-tweetqa-qag")
# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
- With
transformers
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/t5-large-tweetqa-qag")
output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
Evaluation
- Metric (Question & Answer Generation): raw metric file
Score | Type | Dataset | |
---|---|---|---|
BERTScore | 91.09 | default | lmqg/qag_tweetqa |
Bleu_1 | 41.33 | default | lmqg/qag_tweetqa |
Bleu_2 | 28.37 | default | lmqg/qag_tweetqa |
Bleu_3 | 19.68 | default | lmqg/qag_tweetqa |
Bleu_4 | 13.76 | default | lmqg/qag_tweetqa |
METEOR | 31.61 | default | lmqg/qag_tweetqa |
MoverScore | 62.77 | default | lmqg/qag_tweetqa |
QAAlignedF1Score (BERTScore) | 92.5 | default | lmqg/qag_tweetqa |
QAAlignedF1Score (MoverScore) | 65.05 | default | lmqg/qag_tweetqa |
QAAlignedPrecision (BERTScore) | 92.72 | default | lmqg/qag_tweetqa |
QAAlignedPrecision (MoverScore) | 65.58 | default | lmqg/qag_tweetqa |
QAAlignedRecall (BERTScore) | 92.29 | default | lmqg/qag_tweetqa |
QAAlignedRecall (MoverScore) | 64.59 | default | lmqg/qag_tweetqa |
ROUGE_L | 37.24 | default | lmqg/qag_tweetqa |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qag_tweetqa
- dataset_name: default
- input_types: ['paragraph']
- output_types: ['questions_answers']
- prefix_types: ['qag']
- model: t5-large
- max_length: 256
- max_length_output: 128
- epoch: 16
- batch: 16
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.0
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
- Downloads last month
- 19
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train lmqg/t5-large-tweetqa-qag
Evaluation results
- BLEU4 (Question & Answer Generation) on lmqg/qag_tweetqaself-reported13.760
- ROUGE-L (Question & Answer Generation) on lmqg/qag_tweetqaself-reported37.240
- METEOR (Question & Answer Generation) on lmqg/qag_tweetqaself-reported31.610
- BERTScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported91.090
- MoverScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported62.770
- QAAlignedF1Score-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported92.500
- QAAlignedRecall-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported92.290
- QAAlignedPrecision-BERTScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported92.720
- QAAlignedF1Score-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported65.050
- QAAlignedRecall-MoverScore (Question & Answer Generation) on lmqg/qag_tweetqaself-reported64.590