doberst commited on
Commit
5ae662e
·
verified ·
1 Parent(s): 16811d7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -8
README.md CHANGED
@@ -7,25 +7,28 @@ inference: false
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
- **slim-sentiment** is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, consisting of small, specialized decoder-based models, fine-tuned for function-calling.
11
 
12
  slim-sentiment has been fine-tuned for **sentiment analysis** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.:
13
 
14
  `{"sentiment": ["positive"]}`
15
 
16
 
17
- SLIM models re-imagine traditional 'hard-coded' classifiers through the use of function calls, to provide a flexible natural language generative model that can be used as decision gates and processing steps in a complex LLM-based automation workflow.
18
 
19
  Each slim model has a 'quantized tool' version, e.g., [**'slim-sentiment-tool'**](https://huggingface.co/llmware/slim-sentiment-tool).
20
 
21
 
22
  ## Prompt format:
23
 
24
- `"<human> " + {text} + "\n" + `
25
- `"<{function}> " + {keys} + "</{function}>"`
 
 
26
  `+ "/n<bot>:" `
27
 
28
 
 
29
  <details>
30
  <summary><b> Transformers Script </b> </summary>
31
 
@@ -66,12 +69,10 @@ Each slim model has a 'quantized tool' version, e.g., [**'slim-sentiment-tool'*
66
 
67
  <details>
68
 
69
-
70
- <summary><b>Using as Function Call in LLMWare</b></summary>
71
 
72
- We envision the slim models deployed in a pipeline/workflow/templating framework that handles the prompt packaging more elegantly.
73
 
74
- Check out llmware for one such implementation:
 
75
 
76
  from llmware.models import ModelCatalog
77
  slim_model = ModelCatalog().load_model("llmware/slim-sentiment")
 
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
+ **slim-sentiment** is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") model series, consisting of small, specialized decoder-based models, fine-tuned for function-calling.
11
 
12
  slim-sentiment has been fine-tuned for **sentiment analysis** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.:
13
 
14
  `{"sentiment": ["positive"]}`
15
 
16
 
17
+ SLIM models aspire re-imagine traditional 'hard-coded' classifiers through the use of function calls, to provide a flexible natural language generative model that can be used as decision gates and processing steps in a complex LLM-based automation workflow.
18
 
19
  Each slim model has a 'quantized tool' version, e.g., [**'slim-sentiment-tool'**](https://huggingface.co/llmware/slim-sentiment-tool).
20
 
21
 
22
  ## Prompt format:
23
 
24
+ `"<human> " + {text} + "\n" + `
25
+
26
+ `"<{function}> " + {keys} + "</{function}>"`
27
+
28
  `+ "/n<bot>:" `
29
 
30
 
31
+
32
  <details>
33
  <summary><b> Transformers Script </b> </summary>
34
 
 
69
 
70
  <details>
71
 
 
 
72
 
 
73
 
74
+
75
+ <summary><b>Using as Function Call in LLMWare</b></summary>
76
 
77
  from llmware.models import ModelCatalog
78
  slim_model = ModelCatalog().load_model("llmware/slim-sentiment")