doberst commited on
Commit
16811d7
·
verified ·
1 Parent(s): 7d6b92f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -11
README.md CHANGED
@@ -7,24 +7,27 @@ inference: false
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
- **slim-sentiment** is part of the SLIM ("Structured Language Instruction Model") model series, consisting of small, specialized decoder-based models, fine-tuned for function-calling.
11
 
12
  slim-sentiment has been fine-tuned for **sentiment analysis** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.:
13
 
14
  `{"sentiment": ["positive"]}`
15
 
16
 
17
- SLIM models re-imagine traditional 'hard-coded' classifiers through the use of function calls, and to provide a natural language flexible tool that can be used as decision gates and processing steps in a complex LLM-based automation workflow.
18
 
19
- Each slim model has a corresponding 'quantized tool' version, e.g., [**'slim-sentiment-tool'**](https://huggingface.co/llmware/slim-sentiment-tool).
20
 
21
 
22
  ## Prompt format:
23
 
24
- `"<human> " + {text} + "\n" + "<{function}> " + {keys} + "</{function}>" + "/n<bot>:" `
25
-
 
 
 
26
  <details>
27
- <summary><b> Getting Started with Transformers Script </b> </summary>
28
 
29
  model = AutoModelForCausalLM.from_pretrained("llmware/slim-sentiment")
30
  tokenizer = AutoTokenizer.from_pretrained("llmware/slim-sentiment")
@@ -59,12 +62,11 @@ Each slim model has a corresponding 'quantized tool' version, e.g., [**'slim-se
59
  except:
60
  print("fail - could not convert to python dictionary automatically - ", llm_string_output)
61
 
62
- </details>
63
-
64
-
65
-
66
 
67
- <details>
 
 
68
  <summary><b>Using as Function Call in LLMWare</b></summary>
69
 
70
  We envision the slim models deployed in a pipeline/workflow/templating framework that handles the prompt packaging more elegantly.
 
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
10
+ **slim-sentiment** is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, consisting of small, specialized decoder-based models, fine-tuned for function-calling.
11
 
12
  slim-sentiment has been fine-tuned for **sentiment analysis** function calls, generating output consisting of a python dictionary corresponding to specified keys, e.g.:
13
 
14
  `{"sentiment": ["positive"]}`
15
 
16
 
17
+ SLIM models re-imagine traditional 'hard-coded' classifiers through the use of function calls, to provide a flexible natural language generative model that can be used as decision gates and processing steps in a complex LLM-based automation workflow.
18
 
19
+ Each slim model has a 'quantized tool' version, e.g., [**'slim-sentiment-tool'**](https://huggingface.co/llmware/slim-sentiment-tool).
20
 
21
 
22
  ## Prompt format:
23
 
24
+ `"<human> " + {text} + "\n" + `
25
+ `"<{function}> " + {keys} + "</{function}>"`
26
+ `+ "/n<bot>:" `
27
+
28
+
29
  <details>
30
+ <summary><b> Transformers Script </b> </summary>
31
 
32
  model = AutoModelForCausalLM.from_pretrained("llmware/slim-sentiment")
33
  tokenizer = AutoTokenizer.from_pretrained("llmware/slim-sentiment")
 
62
  except:
63
  print("fail - could not convert to python dictionary automatically - ", llm_string_output)
64
 
65
+ </details>
 
 
 
66
 
67
+ <details>
68
+
69
+
70
  <summary><b>Using as Function Call in LLMWare</b></summary>
71
 
72
  We envision the slim models deployed in a pipeline/workflow/templating framework that handles the prompt packaging more elegantly.