lkllkl's picture
Upload folder using huggingface_hub
da2e2ac verified
raw
history blame
12.7 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import warnings
import torch.utils.checkpoint as cp
from collections import OrderedDict
from mmcv.runner import BaseModule
from mmdet.models.builder import BACKBONES
from torch.nn.modules.batchnorm import _BatchNorm
VoVNet19_slim_dw_eSE = {
'stem': [64, 64, 64],
'stage_conv_ch': [64, 80, 96, 112],
'stage_out_ch': [112, 256, 384, 512],
"layer_per_block": 3,
"block_per_stage": [1, 1, 1, 1],
"eSE": True,
"dw": True
}
VoVNet19_dw_eSE = {
'stem': [64, 64, 64],
"stage_conv_ch": [128, 160, 192, 224],
"stage_out_ch": [256, 512, 768, 1024],
"layer_per_block": 3,
"block_per_stage": [1, 1, 1, 1],
"eSE": True,
"dw": True
}
VoVNet19_slim_eSE = {
'stem': [64, 64, 128],
'stage_conv_ch': [64, 80, 96, 112],
'stage_out_ch': [112, 256, 384, 512],
'layer_per_block': 3,
'block_per_stage': [1, 1, 1, 1],
'eSE': True,
"dw": False
}
VoVNet19_eSE = {
'stem': [64, 64, 128],
"stage_conv_ch": [128, 160, 192, 224],
"stage_out_ch": [256, 512, 768, 1024],
"layer_per_block": 3,
"block_per_stage": [1, 1, 1, 1],
"eSE": True,
"dw": False
}
VoVNet39_eSE = {
'stem': [64, 64, 128],
"stage_conv_ch": [128, 160, 192, 224],
"stage_out_ch": [256, 512, 768, 1024],
"layer_per_block": 5,
"block_per_stage": [1, 1, 2, 2],
"eSE": True,
"dw": False
}
VoVNet57_eSE = {
'stem': [64, 64, 128],
"stage_conv_ch": [128, 160, 192, 224],
"stage_out_ch": [256, 512, 768, 1024],
"layer_per_block": 5,
"block_per_stage": [1, 1, 4, 3],
"eSE": True,
"dw": False
}
VoVNet99_eSE = {
'stem': [64, 64, 128],
"stage_conv_ch": [128, 160, 192, 224],
"stage_out_ch": [256, 512, 768, 1024],
"layer_per_block": 5,
"block_per_stage": [1, 3, 9, 3],
"eSE": True,
"dw": False
}
_STAGE_SPECS = {
"V-19-slim-dw-eSE": VoVNet19_slim_dw_eSE,
"V-19-dw-eSE": VoVNet19_dw_eSE,
"V-19-slim-eSE": VoVNet19_slim_eSE,
"V-19-eSE": VoVNet19_eSE,
"V-39-eSE": VoVNet39_eSE,
"V-57-eSE": VoVNet57_eSE,
"V-99-eSE": VoVNet99_eSE,
}
def dw_conv3x3(in_channels, out_channels, module_name, postfix, stride=1, kernel_size=3, padding=1):
"""3x3 convolution with padding"""
return [
(
'{}_{}/dw_conv3x3'.format(module_name, postfix),
nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=out_channels,
bias=False
)
),
(
'{}_{}/pw_conv1x1'.format(module_name, postfix),
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, groups=1, bias=False)
),
('{}_{}/pw_norm'.format(module_name, postfix), nn.BatchNorm2d(out_channels)),
('{}_{}/pw_relu'.format(module_name, postfix), nn.ReLU(inplace=True)),
]
def conv3x3(in_channels, out_channels, module_name, postfix, stride=1, groups=1, kernel_size=3, padding=1):
"""3x3 convolution with padding"""
return [
(
f"{module_name}_{postfix}/conv",
nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=False,
),
),
(f"{module_name}_{postfix}/norm", nn.BatchNorm2d(out_channels)),
(f"{module_name}_{postfix}/relu", nn.ReLU(inplace=True)),
]
def conv1x1(in_channels, out_channels, module_name, postfix, stride=1, groups=1, kernel_size=1, padding=0):
"""1x1 convolution with padding"""
return [
(
f"{module_name}_{postfix}/conv",
nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=False,
),
),
(f"{module_name}_{postfix}/norm", nn.BatchNorm2d(out_channels)),
(f"{module_name}_{postfix}/relu", nn.ReLU(inplace=True)),
]
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(x + 3.0, inplace=self.inplace) / 6.0
class eSEModule(nn.Module):
def __init__(self, channel, reduction=4):
super(eSEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(channel, channel, kernel_size=1, padding=0)
self.hsigmoid = Hsigmoid()
def forward(self, x):
inputs = x
x = self.avg_pool(x)
x = self.fc(x)
x = self.hsigmoid(x)
return inputs * x
class _OSA_module(nn.Module):
def __init__(self, in_ch, stage_ch, concat_ch, layer_per_block, module_name, SE=False, identity=False, depthwise=False, with_cp=False):
super(_OSA_module, self).__init__()
self.with_cp = with_cp
self.identity = identity
self.depthwise = depthwise
self.isReduced = False
self.layers = nn.ModuleList()
in_channel = in_ch
if self.depthwise and in_channel != stage_ch:
self.isReduced = True
self.conv_reduction = nn.Sequential(
OrderedDict(conv1x1(in_channel, stage_ch, "{}_reduction".format(module_name), "0"))
)
for i in range(layer_per_block):
if self.depthwise:
self.layers.append(nn.Sequential(OrderedDict(dw_conv3x3(stage_ch, stage_ch, module_name, i))))
else:
self.layers.append(nn.Sequential(OrderedDict(conv3x3(in_channel, stage_ch, module_name, i))))
in_channel = stage_ch
# feature aggregation
in_channel = in_ch + layer_per_block * stage_ch
self.concat = nn.Sequential(OrderedDict(conv1x1(in_channel, concat_ch, module_name, "concat")))
self.ese = eSEModule(concat_ch)
def _forward(self, x):
identity_feat = x
output = []
output.append(x)
if self.depthwise and self.isReduced:
x = self.conv_reduction(x)
for layer in self.layers:
x = layer(x)
output.append(x)
x = torch.cat(output, dim=1)
xt = self.concat(x)
xt = self.ese(xt)
if self.identity:
xt = xt + identity_feat
return xt
def forward(self, x):
if self.with_cp and self.training and x.requires_grad:
return cp.checkpoint(self._forward, x)
else:
return self._forward(x)
class _OSA_stage(nn.Sequential):
def __init__(self, in_ch, stage_ch, concat_ch, block_per_stage, layer_per_block, stage_num, SE=False, depthwise=False, with_cp=False):
super(_OSA_stage, self).__init__()
if not stage_num == 2:
self.add_module("Pooling", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True))
if block_per_stage != 1:
SE = False
module_name = f"OSA{stage_num}_1"
self.add_module(
module_name, _OSA_module(in_ch, stage_ch, concat_ch, layer_per_block, module_name, SE, depthwise=depthwise, with_cp=with_cp)
)
for i in range(block_per_stage - 1):
if i != block_per_stage - 2: # last block
SE = False
module_name = f"OSA{stage_num}_{i + 2}"
self.add_module(
module_name,
_OSA_module(
concat_ch,
stage_ch,
concat_ch,
layer_per_block,
module_name,
SE,
identity=True,
depthwise=depthwise,
with_cp=with_cp
),
)
@BACKBONES.register_module()
class VoVNet(BaseModule):
def __init__(self, spec_name,
input_ch=3,
out_features=None,
frozen_stages=-1,
norm_eval=True,
with_cp=False,
pretrained=None,
init_cfg=None):
"""
Args:
input_ch(int) : the number of input channel
out_features (list[str]): name of the layers whose outputs should
be returned in forward. Can be anything in "stem", "stage2" ...
"""
super(VoVNet, self).__init__(init_cfg)
self.frozen_stages = frozen_stages
self.norm_eval = norm_eval
if isinstance(pretrained, str):
warnings.warn('DeprecationWarning: pretrained is deprecated, '
'please use "init_cfg" instead')
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
stage_specs = _STAGE_SPECS[spec_name]
stem_ch = stage_specs["stem"]
config_stage_ch = stage_specs["stage_conv_ch"]
config_concat_ch = stage_specs["stage_out_ch"]
block_per_stage = stage_specs["block_per_stage"]
layer_per_block = stage_specs["layer_per_block"]
SE = stage_specs["eSE"]
depthwise = stage_specs["dw"]
self._out_features = out_features
# Stem module
conv_type = dw_conv3x3 if depthwise else conv3x3
stem = conv3x3(input_ch, stem_ch[0], "stem", "1", 2)
stem += conv_type(stem_ch[0], stem_ch[1], "stem", "2", 1)
stem += conv_type(stem_ch[1], stem_ch[2], "stem", "3", 2)
self.add_module("stem", nn.Sequential((OrderedDict(stem))))
current_stirde = 4
self._out_feature_strides = {"stem": current_stirde, "stage2": current_stirde}
self._out_feature_channels = {"stem": stem_ch[2]}
stem_out_ch = [stem_ch[2]]
in_ch_list = stem_out_ch + config_concat_ch[:-1]
# OSA stages
self.stage_names = []
for i in range(4): # num_stages
name = "stage%d" % (i + 2) # stage 2 ... stage 5
self.stage_names.append(name)
self.add_module(
name,
_OSA_stage(
in_ch_list[i],
config_stage_ch[i],
config_concat_ch[i],
block_per_stage[i],
layer_per_block,
i + 2,
SE,
depthwise,
with_cp=with_cp
),
)
self._out_feature_channels[name] = config_concat_ch[i]
if not i == 0:
self._out_feature_strides[name] = current_stirde = int(current_stirde * 2)
# initialize weights
# self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
def forward(self, x):
# permute rgb
tmp = torch.zeros_like(x)
tmp[:, 0] = x[:, 2]
tmp[:, 1] = x[:, 1]
tmp[:, 2] = x[:, 0]
outputs = []
x = self.stem(tmp)
for name in self.stage_names:
x = getattr(self, name)(x)
if name in self._out_features:
outputs.append(x)
return outputs
def _freeze_stages(self):
if self.frozen_stages >= 0:
m = getattr(self, 'stem')
m.eval()
for param in m.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = getattr(self, f'stage{i+1}')
m.eval()
for param in m.parameters():
param.requires_grad = False
def train(self, mode=True):
"""Convert the model into training mode while keep normalization layer
freezed."""
super(VoVNet, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()