File size: 12,651 Bytes
da2e2ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import warnings
import torch.utils.checkpoint as cp
from collections import OrderedDict
from mmcv.runner import BaseModule
from mmdet.models.builder import BACKBONES
from torch.nn.modules.batchnorm import _BatchNorm
VoVNet19_slim_dw_eSE = {
'stem': [64, 64, 64],
'stage_conv_ch': [64, 80, 96, 112],
'stage_out_ch': [112, 256, 384, 512],
"layer_per_block": 3,
"block_per_stage": [1, 1, 1, 1],
"eSE": True,
"dw": True
}
VoVNet19_dw_eSE = {
'stem': [64, 64, 64],
"stage_conv_ch": [128, 160, 192, 224],
"stage_out_ch": [256, 512, 768, 1024],
"layer_per_block": 3,
"block_per_stage": [1, 1, 1, 1],
"eSE": True,
"dw": True
}
VoVNet19_slim_eSE = {
'stem': [64, 64, 128],
'stage_conv_ch': [64, 80, 96, 112],
'stage_out_ch': [112, 256, 384, 512],
'layer_per_block': 3,
'block_per_stage': [1, 1, 1, 1],
'eSE': True,
"dw": False
}
VoVNet19_eSE = {
'stem': [64, 64, 128],
"stage_conv_ch": [128, 160, 192, 224],
"stage_out_ch": [256, 512, 768, 1024],
"layer_per_block": 3,
"block_per_stage": [1, 1, 1, 1],
"eSE": True,
"dw": False
}
VoVNet39_eSE = {
'stem': [64, 64, 128],
"stage_conv_ch": [128, 160, 192, 224],
"stage_out_ch": [256, 512, 768, 1024],
"layer_per_block": 5,
"block_per_stage": [1, 1, 2, 2],
"eSE": True,
"dw": False
}
VoVNet57_eSE = {
'stem': [64, 64, 128],
"stage_conv_ch": [128, 160, 192, 224],
"stage_out_ch": [256, 512, 768, 1024],
"layer_per_block": 5,
"block_per_stage": [1, 1, 4, 3],
"eSE": True,
"dw": False
}
VoVNet99_eSE = {
'stem': [64, 64, 128],
"stage_conv_ch": [128, 160, 192, 224],
"stage_out_ch": [256, 512, 768, 1024],
"layer_per_block": 5,
"block_per_stage": [1, 3, 9, 3],
"eSE": True,
"dw": False
}
_STAGE_SPECS = {
"V-19-slim-dw-eSE": VoVNet19_slim_dw_eSE,
"V-19-dw-eSE": VoVNet19_dw_eSE,
"V-19-slim-eSE": VoVNet19_slim_eSE,
"V-19-eSE": VoVNet19_eSE,
"V-39-eSE": VoVNet39_eSE,
"V-57-eSE": VoVNet57_eSE,
"V-99-eSE": VoVNet99_eSE,
}
def dw_conv3x3(in_channels, out_channels, module_name, postfix, stride=1, kernel_size=3, padding=1):
"""3x3 convolution with padding"""
return [
(
'{}_{}/dw_conv3x3'.format(module_name, postfix),
nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=out_channels,
bias=False
)
),
(
'{}_{}/pw_conv1x1'.format(module_name, postfix),
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, groups=1, bias=False)
),
('{}_{}/pw_norm'.format(module_name, postfix), nn.BatchNorm2d(out_channels)),
('{}_{}/pw_relu'.format(module_name, postfix), nn.ReLU(inplace=True)),
]
def conv3x3(in_channels, out_channels, module_name, postfix, stride=1, groups=1, kernel_size=3, padding=1):
"""3x3 convolution with padding"""
return [
(
f"{module_name}_{postfix}/conv",
nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=False,
),
),
(f"{module_name}_{postfix}/norm", nn.BatchNorm2d(out_channels)),
(f"{module_name}_{postfix}/relu", nn.ReLU(inplace=True)),
]
def conv1x1(in_channels, out_channels, module_name, postfix, stride=1, groups=1, kernel_size=1, padding=0):
"""1x1 convolution with padding"""
return [
(
f"{module_name}_{postfix}/conv",
nn.Conv2d(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=False,
),
),
(f"{module_name}_{postfix}/norm", nn.BatchNorm2d(out_channels)),
(f"{module_name}_{postfix}/relu", nn.ReLU(inplace=True)),
]
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(x + 3.0, inplace=self.inplace) / 6.0
class eSEModule(nn.Module):
def __init__(self, channel, reduction=4):
super(eSEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Conv2d(channel, channel, kernel_size=1, padding=0)
self.hsigmoid = Hsigmoid()
def forward(self, x):
inputs = x
x = self.avg_pool(x)
x = self.fc(x)
x = self.hsigmoid(x)
return inputs * x
class _OSA_module(nn.Module):
def __init__(self, in_ch, stage_ch, concat_ch, layer_per_block, module_name, SE=False, identity=False, depthwise=False, with_cp=False):
super(_OSA_module, self).__init__()
self.with_cp = with_cp
self.identity = identity
self.depthwise = depthwise
self.isReduced = False
self.layers = nn.ModuleList()
in_channel = in_ch
if self.depthwise and in_channel != stage_ch:
self.isReduced = True
self.conv_reduction = nn.Sequential(
OrderedDict(conv1x1(in_channel, stage_ch, "{}_reduction".format(module_name), "0"))
)
for i in range(layer_per_block):
if self.depthwise:
self.layers.append(nn.Sequential(OrderedDict(dw_conv3x3(stage_ch, stage_ch, module_name, i))))
else:
self.layers.append(nn.Sequential(OrderedDict(conv3x3(in_channel, stage_ch, module_name, i))))
in_channel = stage_ch
# feature aggregation
in_channel = in_ch + layer_per_block * stage_ch
self.concat = nn.Sequential(OrderedDict(conv1x1(in_channel, concat_ch, module_name, "concat")))
self.ese = eSEModule(concat_ch)
def _forward(self, x):
identity_feat = x
output = []
output.append(x)
if self.depthwise and self.isReduced:
x = self.conv_reduction(x)
for layer in self.layers:
x = layer(x)
output.append(x)
x = torch.cat(output, dim=1)
xt = self.concat(x)
xt = self.ese(xt)
if self.identity:
xt = xt + identity_feat
return xt
def forward(self, x):
if self.with_cp and self.training and x.requires_grad:
return cp.checkpoint(self._forward, x)
else:
return self._forward(x)
class _OSA_stage(nn.Sequential):
def __init__(self, in_ch, stage_ch, concat_ch, block_per_stage, layer_per_block, stage_num, SE=False, depthwise=False, with_cp=False):
super(_OSA_stage, self).__init__()
if not stage_num == 2:
self.add_module("Pooling", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True))
if block_per_stage != 1:
SE = False
module_name = f"OSA{stage_num}_1"
self.add_module(
module_name, _OSA_module(in_ch, stage_ch, concat_ch, layer_per_block, module_name, SE, depthwise=depthwise, with_cp=with_cp)
)
for i in range(block_per_stage - 1):
if i != block_per_stage - 2: # last block
SE = False
module_name = f"OSA{stage_num}_{i + 2}"
self.add_module(
module_name,
_OSA_module(
concat_ch,
stage_ch,
concat_ch,
layer_per_block,
module_name,
SE,
identity=True,
depthwise=depthwise,
with_cp=with_cp
),
)
@BACKBONES.register_module()
class VoVNet(BaseModule):
def __init__(self, spec_name,
input_ch=3,
out_features=None,
frozen_stages=-1,
norm_eval=True,
with_cp=False,
pretrained=None,
init_cfg=None):
"""
Args:
input_ch(int) : the number of input channel
out_features (list[str]): name of the layers whose outputs should
be returned in forward. Can be anything in "stem", "stage2" ...
"""
super(VoVNet, self).__init__(init_cfg)
self.frozen_stages = frozen_stages
self.norm_eval = norm_eval
if isinstance(pretrained, str):
warnings.warn('DeprecationWarning: pretrained is deprecated, '
'please use "init_cfg" instead')
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
stage_specs = _STAGE_SPECS[spec_name]
stem_ch = stage_specs["stem"]
config_stage_ch = stage_specs["stage_conv_ch"]
config_concat_ch = stage_specs["stage_out_ch"]
block_per_stage = stage_specs["block_per_stage"]
layer_per_block = stage_specs["layer_per_block"]
SE = stage_specs["eSE"]
depthwise = stage_specs["dw"]
self._out_features = out_features
# Stem module
conv_type = dw_conv3x3 if depthwise else conv3x3
stem = conv3x3(input_ch, stem_ch[0], "stem", "1", 2)
stem += conv_type(stem_ch[0], stem_ch[1], "stem", "2", 1)
stem += conv_type(stem_ch[1], stem_ch[2], "stem", "3", 2)
self.add_module("stem", nn.Sequential((OrderedDict(stem))))
current_stirde = 4
self._out_feature_strides = {"stem": current_stirde, "stage2": current_stirde}
self._out_feature_channels = {"stem": stem_ch[2]}
stem_out_ch = [stem_ch[2]]
in_ch_list = stem_out_ch + config_concat_ch[:-1]
# OSA stages
self.stage_names = []
for i in range(4): # num_stages
name = "stage%d" % (i + 2) # stage 2 ... stage 5
self.stage_names.append(name)
self.add_module(
name,
_OSA_stage(
in_ch_list[i],
config_stage_ch[i],
config_concat_ch[i],
block_per_stage[i],
layer_per_block,
i + 2,
SE,
depthwise,
with_cp=with_cp
),
)
self._out_feature_channels[name] = config_concat_ch[i]
if not i == 0:
self._out_feature_strides[name] = current_stirde = int(current_stirde * 2)
# initialize weights
# self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)
def forward(self, x):
# permute rgb
tmp = torch.zeros_like(x)
tmp[:, 0] = x[:, 2]
tmp[:, 1] = x[:, 1]
tmp[:, 2] = x[:, 0]
outputs = []
x = self.stem(tmp)
for name in self.stage_names:
x = getattr(self, name)(x)
if name in self._out_features:
outputs.append(x)
return outputs
def _freeze_stages(self):
if self.frozen_stages >= 0:
m = getattr(self, 'stem')
m.eval()
for param in m.parameters():
param.requires_grad = False
for i in range(1, self.frozen_stages + 1):
m = getattr(self, f'stage{i+1}')
m.eval()
for param in m.parameters():
param.requires_grad = False
def train(self, mode=True):
"""Convert the model into training mode while keep normalization layer
freezed."""
super(VoVNet, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()
|