File size: 12,651 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import torch
import torch.nn as nn
import torch.nn.functional as F
import warnings
import torch.utils.checkpoint as cp
from collections import OrderedDict
from mmcv.runner import BaseModule
from mmdet.models.builder import BACKBONES
from torch.nn.modules.batchnorm import _BatchNorm


VoVNet19_slim_dw_eSE = {
    'stem': [64, 64, 64],
    'stage_conv_ch': [64, 80, 96, 112],
    'stage_out_ch': [112, 256, 384, 512],
    "layer_per_block": 3,
    "block_per_stage": [1, 1, 1, 1],
    "eSE": True,
    "dw": True
}

VoVNet19_dw_eSE = {
    'stem': [64, 64, 64],
    "stage_conv_ch": [128, 160, 192, 224],
    "stage_out_ch": [256, 512, 768, 1024],
    "layer_per_block": 3,
    "block_per_stage": [1, 1, 1, 1],
    "eSE": True,
    "dw": True
}

VoVNet19_slim_eSE = {
    'stem': [64, 64, 128],
    'stage_conv_ch': [64, 80, 96, 112],
    'stage_out_ch': [112, 256, 384, 512],
    'layer_per_block': 3,
    'block_per_stage': [1, 1, 1, 1],
    'eSE': True,
    "dw": False
}

VoVNet19_eSE = {
    'stem': [64, 64, 128],
    "stage_conv_ch": [128, 160, 192, 224],
    "stage_out_ch": [256, 512, 768, 1024],
    "layer_per_block": 3,
    "block_per_stage": [1, 1, 1, 1],
    "eSE": True,
    "dw": False
}

VoVNet39_eSE = {
    'stem': [64, 64, 128],
    "stage_conv_ch": [128, 160, 192, 224],
    "stage_out_ch": [256, 512, 768, 1024],
    "layer_per_block": 5,
    "block_per_stage": [1, 1, 2, 2],
    "eSE": True,
    "dw": False
}

VoVNet57_eSE = {
    'stem': [64, 64, 128],
    "stage_conv_ch": [128, 160, 192, 224],
    "stage_out_ch": [256, 512, 768, 1024],
    "layer_per_block": 5,
    "block_per_stage": [1, 1, 4, 3],
    "eSE": True,
    "dw": False
}

VoVNet99_eSE = {
    'stem': [64, 64, 128],
    "stage_conv_ch": [128, 160, 192, 224],
    "stage_out_ch": [256, 512, 768, 1024],
    "layer_per_block": 5,
    "block_per_stage": [1, 3, 9, 3],
    "eSE": True,
    "dw": False
}

_STAGE_SPECS = {
    "V-19-slim-dw-eSE": VoVNet19_slim_dw_eSE,
    "V-19-dw-eSE": VoVNet19_dw_eSE,
    "V-19-slim-eSE": VoVNet19_slim_eSE,
    "V-19-eSE": VoVNet19_eSE,
    "V-39-eSE": VoVNet39_eSE,
    "V-57-eSE": VoVNet57_eSE,
    "V-99-eSE": VoVNet99_eSE,
}


def dw_conv3x3(in_channels, out_channels, module_name, postfix, stride=1, kernel_size=3, padding=1):
    """3x3 convolution with padding"""
    return [
        (
            '{}_{}/dw_conv3x3'.format(module_name, postfix),
            nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
                groups=out_channels,
                bias=False
            )
        ),
        (
            '{}_{}/pw_conv1x1'.format(module_name, postfix),
            nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, groups=1, bias=False)
        ),
        ('{}_{}/pw_norm'.format(module_name, postfix), nn.BatchNorm2d(out_channels)),
        ('{}_{}/pw_relu'.format(module_name, postfix), nn.ReLU(inplace=True)),
    ]


def conv3x3(in_channels, out_channels, module_name, postfix, stride=1, groups=1, kernel_size=3, padding=1):
    """3x3 convolution with padding"""
    return [
        (
            f"{module_name}_{postfix}/conv",
            nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
                groups=groups,
                bias=False,
            ),
        ),
        (f"{module_name}_{postfix}/norm", nn.BatchNorm2d(out_channels)),
        (f"{module_name}_{postfix}/relu", nn.ReLU(inplace=True)),
    ]


def conv1x1(in_channels, out_channels, module_name, postfix, stride=1, groups=1, kernel_size=1, padding=0):
    """1x1 convolution with padding"""
    return [
        (
            f"{module_name}_{postfix}/conv",
            nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size=kernel_size,
                stride=stride,
                padding=padding,
                groups=groups,
                bias=False,
            ),
        ),
        (f"{module_name}_{postfix}/norm", nn.BatchNorm2d(out_channels)),
        (f"{module_name}_{postfix}/relu", nn.ReLU(inplace=True)),
    ]


class Hsigmoid(nn.Module):
    def __init__(self, inplace=True):
        super(Hsigmoid, self).__init__()
        self.inplace = inplace

    def forward(self, x):
        return F.relu6(x + 3.0, inplace=self.inplace) / 6.0


class eSEModule(nn.Module):
    def __init__(self, channel, reduction=4):
        super(eSEModule, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Conv2d(channel, channel, kernel_size=1, padding=0)
        self.hsigmoid = Hsigmoid()

    def forward(self, x):
        inputs = x
        x = self.avg_pool(x)
        x = self.fc(x)
        x = self.hsigmoid(x)
        return inputs * x


class _OSA_module(nn.Module):
    def __init__(self, in_ch, stage_ch, concat_ch, layer_per_block, module_name, SE=False, identity=False, depthwise=False, with_cp=False):
        super(_OSA_module, self).__init__()
        self.with_cp = with_cp

        self.identity = identity
        self.depthwise = depthwise
        self.isReduced = False
        self.layers = nn.ModuleList()
        in_channel = in_ch

        if self.depthwise and in_channel != stage_ch:
            self.isReduced = True
            self.conv_reduction = nn.Sequential(
                OrderedDict(conv1x1(in_channel, stage_ch, "{}_reduction".format(module_name), "0"))
            )

        for i in range(layer_per_block):
            if self.depthwise:
                self.layers.append(nn.Sequential(OrderedDict(dw_conv3x3(stage_ch, stage_ch, module_name, i))))
            else:
                self.layers.append(nn.Sequential(OrderedDict(conv3x3(in_channel, stage_ch, module_name, i))))
            in_channel = stage_ch

        # feature aggregation
        in_channel = in_ch + layer_per_block * stage_ch
        self.concat = nn.Sequential(OrderedDict(conv1x1(in_channel, concat_ch, module_name, "concat")))

        self.ese = eSEModule(concat_ch)

    def _forward(self, x):
        identity_feat = x

        output = []
        output.append(x)

        if self.depthwise and self.isReduced:
            x = self.conv_reduction(x)

        for layer in self.layers:
            x = layer(x)
            output.append(x)

        x = torch.cat(output, dim=1)
        xt = self.concat(x)

        xt = self.ese(xt)

        if self.identity:
            xt = xt + identity_feat

        return xt

    def forward(self, x):
        if self.with_cp and self.training and x.requires_grad:
            return cp.checkpoint(self._forward, x)
        else:
            return self._forward(x)


class _OSA_stage(nn.Sequential):
    def __init__(self, in_ch, stage_ch, concat_ch, block_per_stage, layer_per_block, stage_num, SE=False, depthwise=False, with_cp=False):
        super(_OSA_stage, self).__init__()
        if not stage_num == 2:
            self.add_module("Pooling", nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True))

        if block_per_stage != 1:
            SE = False

        module_name = f"OSA{stage_num}_1"
        self.add_module(
            module_name, _OSA_module(in_ch, stage_ch, concat_ch, layer_per_block, module_name, SE, depthwise=depthwise, with_cp=with_cp)
        )

        for i in range(block_per_stage - 1):
            if i != block_per_stage - 2:  # last block
                SE = False
            module_name = f"OSA{stage_num}_{i + 2}"
            self.add_module(
                module_name,
                _OSA_module(
                    concat_ch,
                    stage_ch,
                    concat_ch,
                    layer_per_block,
                    module_name,
                    SE,
                    identity=True,
                    depthwise=depthwise,
                    with_cp=with_cp
                ),
            )


@BACKBONES.register_module()
class VoVNet(BaseModule):
    def __init__(self, spec_name,

                 input_ch=3,

                 out_features=None,

                 frozen_stages=-1,

                 norm_eval=True,

                 with_cp=False,

                 pretrained=None,

                 init_cfg=None):
        """

        Args:

            input_ch(int) : the number of input channel

            out_features (list[str]): name of the layers whose outputs should

                be returned in forward. Can be anything in "stem", "stage2" ...

        """
        super(VoVNet, self).__init__(init_cfg)
        self.frozen_stages = frozen_stages
        self.norm_eval = norm_eval

        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        stage_specs = _STAGE_SPECS[spec_name]

        stem_ch = stage_specs["stem"]
        config_stage_ch = stage_specs["stage_conv_ch"]
        config_concat_ch = stage_specs["stage_out_ch"]
        block_per_stage = stage_specs["block_per_stage"]
        layer_per_block = stage_specs["layer_per_block"]
        SE = stage_specs["eSE"]
        depthwise = stage_specs["dw"]

        self._out_features = out_features

        # Stem module
        conv_type = dw_conv3x3 if depthwise else conv3x3
        stem = conv3x3(input_ch, stem_ch[0], "stem", "1", 2)
        stem += conv_type(stem_ch[0], stem_ch[1], "stem", "2", 1)
        stem += conv_type(stem_ch[1], stem_ch[2], "stem", "3", 2)
        self.add_module("stem", nn.Sequential((OrderedDict(stem))))
        current_stirde = 4
        self._out_feature_strides = {"stem": current_stirde, "stage2": current_stirde}
        self._out_feature_channels = {"stem": stem_ch[2]}

        stem_out_ch = [stem_ch[2]]
        in_ch_list = stem_out_ch + config_concat_ch[:-1]

        # OSA stages
        self.stage_names = []
        for i in range(4):  # num_stages
            name = "stage%d" % (i + 2)  # stage 2 ... stage 5
            self.stage_names.append(name)
            self.add_module(
                name,
                _OSA_stage(
                    in_ch_list[i],
                    config_stage_ch[i],
                    config_concat_ch[i],
                    block_per_stage[i],
                    layer_per_block,
                    i + 2,
                    SE,
                    depthwise,
                    with_cp=with_cp
                ),
            )

            self._out_feature_channels[name] = config_concat_ch[i]
            if not i == 0:
                self._out_feature_strides[name] = current_stirde = int(current_stirde * 2)

        # initialize weights
        # self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)

    def forward(self, x):
        # permute rgb
        tmp = torch.zeros_like(x)
        tmp[:, 0] = x[:, 2]
        tmp[:, 1] = x[:, 1]
        tmp[:, 2] = x[:, 0]
        outputs = []
        x = self.stem(tmp)
        for name in self.stage_names:
            x = getattr(self, name)(x)
            if name in self._out_features:
                outputs.append(x)

        return outputs

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            m = getattr(self, 'stem')
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

        for i in range(1, self.frozen_stages + 1):
            m = getattr(self, f'stage{i+1}')
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

    def train(self, mode=True):
        """Convert the model into training mode while keep normalization layer

        freezed."""
        super(VoVNet, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                # trick: eval have effect on BatchNorm only
                if isinstance(m, _BatchNorm):
                    m.eval()