navsim_ours / navsim /agents /transfuser /transfuser_loss.py
lkllkl's picture
Upload folder using huggingface_hub
da2e2ac verified
raw
history blame
5.54 kB
from typing import Dict
from scipy.optimize import linear_sum_assignment
import torch
import torch.nn.functional as F
from navsim.agents.transfuser.transfuser_config import TransfuserConfig
def transfuser_loss(
targets: Dict[str, torch.Tensor], predictions: Dict[str, torch.Tensor], config: TransfuserConfig
):
"""
Helper function calculating complete loss of Transfuser
:param targets: dictionary of name tensor pairings
:param predictions: dictionary of name tensor pairings
:param config: global Transfuser config
:return: combined loss value
"""
trajectory_loss = F.l1_loss(predictions["trajectory"], targets["trajectory"])
agent_class_loss, agent_box_loss = _agent_loss(targets, predictions, config)
bev_semantic_loss = F.cross_entropy(
predictions["bev_semantic_map"], targets["bev_semantic_map"].long()
)
loss = (
config.trajectory_imi_weight * trajectory_loss
+ config.agent_class_weight * agent_class_loss
+ config.agent_box_weight * agent_box_loss
+ config.bev_semantic_weight * bev_semantic_loss
)
return loss, {
'trajectory_loss': config.trajectory_imi_weight * trajectory_loss,
'agent_class_loss': config.agent_class_weight * agent_class_loss,
'agent_box_loss': config.agent_box_weight * agent_box_loss,
'bev_semantic_loss': config.bev_semantic_weight * bev_semantic_loss
}
def _agent_loss(
targets: Dict[str, torch.Tensor], predictions: Dict[str, torch.Tensor], config: TransfuserConfig
):
"""
Hungarian matching loss for agent detection
:param targets: dictionary of name tensor pairings
:param predictions: dictionary of name tensor pairings
:param config: global Transfuser config
:return: detection loss
"""
gt_states, gt_valid = targets["agent_states"], targets["agent_labels"]
pred_states, pred_logits = predictions["agent_states"], predictions["agent_labels"]
# save constants
batch_dim, num_instances = pred_states.shape[:2]
num_gt_instances = gt_valid.sum()
num_gt_instances = num_gt_instances if num_gt_instances > 0 else num_gt_instances + 1
ce_cost = _get_ce_cost(gt_valid, pred_logits)
l1_cost = _get_l1_cost(gt_states, pred_states, gt_valid)
cost = config.agent_class_weight * ce_cost + config.agent_box_weight * l1_cost
cost = cost.cpu()
indices = [linear_sum_assignment(c) for i, c in enumerate(cost)]
matching = [
(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64))
for i, j in indices
]
idx = _get_src_permutation_idx(matching)
pred_states_idx = pred_states[idx]
gt_states_idx = torch.cat([t[i] for t, (_, i) in zip(gt_states, indices)], dim=0)
pred_valid_idx = pred_logits[idx]
gt_valid_idx = torch.cat([t[i] for t, (_, i) in zip(gt_valid, indices)], dim=0).float()
l1_loss = F.l1_loss(pred_states_idx, gt_states_idx, reduction="none")
l1_loss = l1_loss.sum(-1) * gt_valid_idx
l1_loss = l1_loss.view(batch_dim, -1).sum() / num_gt_instances
ce_loss = F.binary_cross_entropy_with_logits(pred_valid_idx, gt_valid_idx, reduction="none")
ce_loss = ce_loss.view(batch_dim, -1).mean()
return ce_loss, l1_loss
@torch.no_grad()
def _get_ce_cost(gt_valid: torch.Tensor, pred_logits: torch.Tensor) -> torch.Tensor:
"""
Function to calculate cross-entropy cost for cost matrix.
:param gt_valid: tensor of binary ground-truth labels
:param pred_logits: tensor of predicted logits of neural net
:return: bce cost matrix as tensor
"""
# NOTE: numerically stable BCE with logits
# https://github.com/pytorch/pytorch/blob/c64e006fc399d528bb812ae589789d0365f3daf4/aten/src/ATen/native/Loss.cpp#L214
gt_valid_expanded = gt_valid[:, :, None].detach().float() # (b, n, 1)
pred_logits_expanded = pred_logits[:, None, :].detach() # (b, 1, n)
max_val = torch.relu(-pred_logits_expanded)
helper_term = max_val + torch.log(
torch.exp(-max_val) + torch.exp(-pred_logits_expanded - max_val)
)
ce_cost = (1 - gt_valid_expanded) * pred_logits_expanded + helper_term # (b, n, n)
ce_cost = ce_cost.permute(0, 2, 1)
return ce_cost
@torch.no_grad()
def _get_l1_cost(
gt_states: torch.Tensor, pred_states: torch.Tensor, gt_valid: torch.Tensor
) -> torch.Tensor:
"""
Function to calculate L1 cost for cost matrix.
:param gt_states: tensor of ground-truth bounding boxes
:param pred_states: tensor of predicted bounding boxes
:param gt_valid: mask of binary ground-truth labels
:return: l1 cost matrix as tensor
"""
gt_states_expanded = gt_states[:, :, None, :2].detach() # (b, n, 1, 2)
pred_states_expanded = pred_states[:, None, :, :2].detach() # (b, 1, n, 2)
l1_cost = gt_valid[..., None].float() * (gt_states_expanded - pred_states_expanded).abs().sum(
dim=-1
)
l1_cost = l1_cost.permute(0, 2, 1)
return l1_cost
def _get_src_permutation_idx(indices):
"""
Helper function to align indices after matching
:param indices: matched indices
:return: permuted indices
"""
# permute predictions following indices
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
return batch_idx, src_idx