File size: 5,538 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from typing import Dict
from scipy.optimize import linear_sum_assignment

import torch
import torch.nn.functional as F

from navsim.agents.transfuser.transfuser_config import TransfuserConfig


def transfuser_loss(

    targets: Dict[str, torch.Tensor], predictions: Dict[str, torch.Tensor], config: TransfuserConfig

):
    """

    Helper function calculating complete loss of Transfuser

    :param targets: dictionary of name tensor pairings

    :param predictions: dictionary of name tensor pairings

    :param config: global Transfuser config

    :return: combined loss value

    """

    trajectory_loss = F.l1_loss(predictions["trajectory"], targets["trajectory"])
    agent_class_loss, agent_box_loss = _agent_loss(targets, predictions, config)
    bev_semantic_loss = F.cross_entropy(
        predictions["bev_semantic_map"], targets["bev_semantic_map"].long()
    )
    loss = (
            config.trajectory_imi_weight * trajectory_loss
            + config.agent_class_weight * agent_class_loss
            + config.agent_box_weight * agent_box_loss
            + config.bev_semantic_weight * bev_semantic_loss
    )
    return loss, {
        'trajectory_loss': config.trajectory_imi_weight * trajectory_loss,
        'agent_class_loss': config.agent_class_weight * agent_class_loss,
        'agent_box_loss': config.agent_box_weight * agent_box_loss,
        'bev_semantic_loss': config.bev_semantic_weight * bev_semantic_loss
    }


def _agent_loss(

    targets: Dict[str, torch.Tensor], predictions: Dict[str, torch.Tensor], config: TransfuserConfig

):
    """

    Hungarian matching loss for agent detection

    :param targets: dictionary of name tensor pairings

    :param predictions: dictionary of name tensor pairings

    :param config: global Transfuser config

    :return: detection loss

    """

    gt_states, gt_valid = targets["agent_states"], targets["agent_labels"]
    pred_states, pred_logits = predictions["agent_states"], predictions["agent_labels"]

    # save constants
    batch_dim, num_instances = pred_states.shape[:2]
    num_gt_instances = gt_valid.sum()
    num_gt_instances = num_gt_instances if num_gt_instances > 0 else num_gt_instances + 1

    ce_cost = _get_ce_cost(gt_valid, pred_logits)
    l1_cost = _get_l1_cost(gt_states, pred_states, gt_valid)

    cost = config.agent_class_weight * ce_cost + config.agent_box_weight * l1_cost
    cost = cost.cpu()

    indices = [linear_sum_assignment(c) for i, c in enumerate(cost)]
    matching = [
        (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64))
        for i, j in indices
    ]
    idx = _get_src_permutation_idx(matching)

    pred_states_idx = pred_states[idx]
    gt_states_idx = torch.cat([t[i] for t, (_, i) in zip(gt_states, indices)], dim=0)

    pred_valid_idx = pred_logits[idx]
    gt_valid_idx = torch.cat([t[i] for t, (_, i) in zip(gt_valid, indices)], dim=0).float()

    l1_loss = F.l1_loss(pred_states_idx, gt_states_idx, reduction="none")
    l1_loss = l1_loss.sum(-1) * gt_valid_idx
    l1_loss = l1_loss.view(batch_dim, -1).sum() / num_gt_instances

    ce_loss = F.binary_cross_entropy_with_logits(pred_valid_idx, gt_valid_idx, reduction="none")
    ce_loss = ce_loss.view(batch_dim, -1).mean()

    return ce_loss, l1_loss


@torch.no_grad()
def _get_ce_cost(gt_valid: torch.Tensor, pred_logits: torch.Tensor) -> torch.Tensor:
    """

    Function to calculate cross-entropy cost for cost matrix.

    :param gt_valid: tensor of binary ground-truth labels

    :param pred_logits: tensor of predicted logits of neural net

    :return: bce cost matrix as tensor

    """

    # NOTE: numerically stable BCE with logits
    # https://github.com/pytorch/pytorch/blob/c64e006fc399d528bb812ae589789d0365f3daf4/aten/src/ATen/native/Loss.cpp#L214
    gt_valid_expanded = gt_valid[:, :, None].detach().float()  # (b, n, 1)
    pred_logits_expanded = pred_logits[:, None, :].detach()  # (b, 1, n)

    max_val = torch.relu(-pred_logits_expanded)
    helper_term = max_val + torch.log(
        torch.exp(-max_val) + torch.exp(-pred_logits_expanded - max_val)
    )
    ce_cost = (1 - gt_valid_expanded) * pred_logits_expanded + helper_term  # (b, n, n)
    ce_cost = ce_cost.permute(0, 2, 1)

    return ce_cost


@torch.no_grad()
def _get_l1_cost(

    gt_states: torch.Tensor, pred_states: torch.Tensor, gt_valid: torch.Tensor

) -> torch.Tensor:
    """

    Function to calculate L1 cost for cost matrix.

    :param gt_states: tensor of ground-truth bounding boxes

    :param pred_states: tensor of predicted bounding boxes

    :param gt_valid: mask of binary ground-truth labels

    :return: l1 cost matrix as tensor

    """

    gt_states_expanded = gt_states[:, :, None, :2].detach()  # (b, n, 1, 2)
    pred_states_expanded = pred_states[:, None, :, :2].detach()  # (b, 1, n, 2)
    l1_cost = gt_valid[..., None].float() * (gt_states_expanded - pred_states_expanded).abs().sum(
        dim=-1
    )
    l1_cost = l1_cost.permute(0, 2, 1)
    return l1_cost


def _get_src_permutation_idx(indices):
    """

    Helper function to align indices after matching

    :param indices: matched indices

    :return: permuted indices

    """
    # permute predictions following indices
    batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
    src_idx = torch.cat([src for (src, _) in indices])
    return batch_idx, src_idx