File size: 6,451 Bytes
da2e2ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
<div id="top" align="center">

<p align="center">
  <img src="assets/navsim_transparent.png" width="500">
</p>
    

**NAVSIM:** *Data-Driven **N**on-Reactive **A**utonomous **V**ehicle **Sim**ulation*


</div>


## Highlights <a name="highlight"></a>

🔥 NAVSIM gathers simulation-based metrics (such as progress and time to collision) for end-to-end driving by unrolling simplified bird's eye view abstractions of scenes for a short simulation horizon. It operates under the condition that the policy has no influence on the environment, which enables **efficient, open-loop metric computation** while being **better aligned with closed-loop** evaluations than traditional displacement errors. 

> NAVSIM attempts to address some of the challenges faced by the community:
> 

> 1. **Providing a principled evaluation** (by incorporating ideas + data from nuPlan)
>   - Key Idea: **PDM Score**, a multi-dimensional metric implemented in open-loop with strong correlation to closed-loop metrics
>   - Critical scenario sampling, focusing on situations with intention changes where the ego history cannot be extrapolated into a plan
>   - Official leaderboard on HuggingFace that remains open and prevents ambiguity in metric definitions between projects
> 

> 2. **Maintaining ease of use** (by emulating nuScenes)
>   - Simple data format and reasonably-sized download (<nuPlan’s 20+ TB)

>   - Large-scale publicly available test split for internal benchmarking
>   - Continually-maintained devkit

🏁 **NAVSIM** will serve as a main track in the **`CVPR 2024 Autonomous Grand Challenge`**. The leaderboard for the challenge is open! For further details, please [check the challenge website](https://opendrivelab.com/challenge2024/)!

<p align="center">
  <img src="assets/navsim_cameras.gif" width="800">
</p>

## Table of Contents
1. [Highlights](#highlight)
2. [Getting started](#gettingstarted)
3. [Changelog](#changelog)
4. [License and citation](#licenseandcitation)
5. [Other resources](#otherresources)


## Getting started <a name="gettingstarted"></a>

- [Download and installation](docs/install.md)
- [Understanding and creating agents](docs/agents.md) 
- [Understanding the data format and classes](docs/cache.md)
- [Dataset splits vs. filtered training / test splits](docs/splits.md)
- [Understanding the PDM Score](docs/metrics.md)
- [Submitting to the Leaderboard](docs/submission.md)
  
<p align="right">(<a href="#top">back to top</a>)</p>


## Changelog <a name="changelog"></a>
- **`[2024/04/21]`** NAVSIM v1.0 release (official devkit version for [AGC 2024](https://opendrivelab.com/challenge2024/))
  - **IMPORTANT NOTE**: The name of the data split `competition_test` was changed to `private_test_e2e`. Please adapt your directory name accordingly. For details see [installation](docs/install.md).
  - Parallelization of metric caching / evaluation
  - Adds [Transfuser](https://arxiv.org/abs/2205.15997) baseline (see [agents](docs/agents.md#Baselines))
  - Adds standardized training and test filtered splits (see [splits](docs/splits.md))
  - Visualization tools (see [tutorial_visualization.ipynb](tutorial/tutorial_visualization.ipynb))
  - Refactoring
- **`[2024/04/03]`** NAVSIM v0.4 release
  - Support for test phase frames of competition
  - Download script for trainval
  - Egostatus MLP Agent and training pipeline
  - Refactoring, Fixes, Documentation
- **`[2024/03/25]`** NAVSIM v0.3 release (official devkit version for warm-up phase)
  - Changes env variable NUPLAN_EXP_ROOT to NAVSIM_EXP_ROOT
  - Adds code for Leaderboard submission
  - Major refactoring of dataloading and configs
- **`[2024/03/11]`** NAVSIM v0.2 release
  - Easier installation and download
  - mini and test data split integration
  - Privileged `Human` agent
- **`[2024/02/20]`** NAVSIM v0.1 release (initial demo)
  - OpenScene-mini sensor blobs and annotation logs
  - Naive `ConstantVelocity` agent


<p align="right">(<a href="#top">back to top</a>)</p>


## License and citation <a name="licenseandcitation"></a>
All assets and code in this repository are under the [Apache 2.0 license](./LICENSE) unless specified otherwise. The datasets (including nuPlan and OpenScene) inherit their own distribution licenses. Please consider citing our paper and project if they help your research.

```BibTeX

@misc{Contributors2024navsim,

    title={NAVSIM: Data-Driven Non-Reactive Autonomous Vehicle Simulation},

    author={NAVSIM Contributors},

    howpublished={\url{https://github.com/autonomousvision/navsim}},

    year={2024}

} 

```

```BibTeX

@inproceedings{Dauner2023CORL,

    title = {Parting with Misconceptions about Learning-based Vehicle Motion Planning},

    author = {Daniel Dauner and Marcel Hallgarten and Andreas Geiger and Kashyap Chitta},

    booktitle = {Conference on Robot Learning (CoRL)},

    year = {2023}

} 

```

<p align="right">(<a href="#top">back to top</a>)</p>


## Other resources <a name="otherresources"></a>

<a href="https://twitter.com/AutoVisionGroup" target="_blank">
    <img alt="Twitter Follow" src="https://img.shields.io/twitter/follow/Awesome Vision Group?style=social&color=brightgreen&logo=twitter" />

  </a>

<a href="https://twitter.com/kashyap7x" target="_blank">

    <img alt="Twitter Follow" src="https://img.shields.io/twitter/follow/Kashyap Chitta?style=social&color=brightgreen&logo=twitter" />

  </a>

<a href="https://twitter.com/DanielDauner" target="_blank">

    <img alt="Twitter Follow" src="https://img.shields.io/twitter/follow/Daniel Dauner?style=social&color=brightgreen&logo=twitter" />

  </a>

<a href="https://twitter.com/MHallgarten0797" target="_blank">

    <img alt="Twitter Follow" src="https://img.shields.io/twitter/follow/Marcel Hallgarten?style=social&color=brightgreen&logo=twitter" />

  </a>


- [SLEDGE](https://github.com/autonomousvision/sledge) | [tuPlan garage](https://github.com/autonomousvision/tuplan_garage) | [CARLA garage](https://github.com/autonomousvision/carla_garage) | [Survey on E2EAD](https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving)
- [PlanT](https://github.com/autonomousvision/plant) | [KING](https://github.com/autonomousvision/king) | [TransFuser](https://github.com/autonomousvision/transfuser) | [NEAT](https://github.com/autonomousvision/neat)

<p align="right">(<a href="#top">back to top</a>)</p>