|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: question-answering |
|
--- |
|
|
|
# litert-community/Gecko-110m-en |
|
|
|
This model provides a few variants of the embedding model published in the [Gecko paper](https://arxiv.org/abs/2403.20327) that are ready for deployment on Android or iOS using [LiteRT stack](https://ai.google.dev/edge/litert) or [google ai edge RAG SDK](https://ai.google.dev/edge/mediapipe/solutions/genai/rag). |
|
|
|
## Use the models |
|
|
|
### Android |
|
|
|
* Try out the gecko embedding model in the [google ai edge RAG SDK](https://ai.google.dev/edge/mediapipe/solutions/genai/rag). You can find the SDK on [GitHub](https://github.com/google-ai-edge/ai-edge-apis/tree/main/local_agents/rag) or follow our [android guide](https://ai.google.dev/edge/mediapipe/solutions/genai/rag/android) |
|
to install directly from Maven. We have also published a |
|
[sample app](https://github.com/google-ai-edge/ai-edge-apis/tree/main/examples/rag). |
|
* Use the sentencepiece model as the tokenizer for the Gecko embedding model. |
|
|
|
## Performance |
|
|
|
### Android |
|
|
|
Note that all benchmark stats are from a Samsung S23 Ultra. |
|
|
|
<table border="1"> |
|
<tr> |
|
<th></th> |
|
<th>Backend</th> |
|
<th>Max sequence length</th> |
|
<th>Init time (ms)</th> |
|
<th>Inference time (ms)</th> |
|
<th>Memory (RSS in MB)</th> |
|
<th>Model size (MB)</th> |
|
</tr> |
|
<tr> |
|
<td><p style="text-align: right">dynamic_int8</p></td> |
|
<td><p style="text-align: right">GPU</p></td> |
|
<td><p style="text-align: right">256</p></td> |
|
<td><p style="text-align: right">1306.06</p></td> |
|
<td><p style="text-align: right">76.2</p></td> |
|
<td><p style="text-align: right">604.5</p></td> |
|
<td><p style="text-align: right">114</p></td> |
|
</tr> |
|
<tr> |
|
<td><p style="text-align: right">dynamic_int8</p></td> |
|
<td><p style="text-align: right">GPU</p></td> |
|
<td><p style="text-align: right">512</p></td> |
|
<td><p style="text-align: right">1363.38</p></td> |
|
<td><p style="text-align: right">173.2</p></td> |
|
<td><p style="text-align: right">604.6</p></td> |
|
<td><p style="text-align: right">120</p></td> |
|
</tr> |
|
<tr> |
|
<td><p style="text-align: right">dynamic_int8</p></td> |
|
<td><p style="text-align: right">GPU</p></td> |
|
<td><p style="text-align: right">1024</p></td> |
|
<td><p style="text-align: right">1419.87</p></td> |
|
<td><p style="text-align: right">397</p></td> |
|
<td><p style="text-align: right">871.1</p></td> |
|
<td><p style="text-align: right">145</p></td> |
|
</tr> |
|
<tr> |
|
<td><p style="text-align: right">dynamic_int8</p></td> |
|
<td><p style="text-align: right">CPU</p></td> |
|
<td><p style="text-align: right">256</p></td> |
|
<td><p style="text-align: right">11.03</p></td> |
|
<td><p style="text-align: right">147.6</p></td> |
|
<td><p style="text-align: right">126.3</p></td> |
|
<td><p style="text-align: right">114</p></td> |
|
</tr> |
|
<tr> |
|
<td><p style="text-align: right">dynamic_int8</p></td> |
|
<td><p style="text-align: right">CPU</p></td> |
|
<td><p style="text-align: right">512</p></td> |
|
<td><p style="text-align: right">30.04</p></td> |
|
<td><p style="text-align: right">353.1</p></td> |
|
<td><p style="text-align: right">225.6</p></td> |
|
<td><p style="text-align: right">120</p></td> |
|
</tr> |
|
<tr> |
|
<td><p style="text-align: right">dynamic_int8</p></td> |
|
<td><p style="text-align: right">CPU</p></td> |
|
<td><p style="text-align: right">1024</p></td> |
|
<td><p style="text-align: right">79.17</p></td> |
|
<td><p style="text-align: right">954</p></td> |
|
<td><p style="text-align: right">619.5</p></td> |
|
<td><p style="text-align: right">145</p></td> |
|
</tr> |
|
</table> |
|
|
|
* Model Size: measured by the size of the .tflite flatbuffer (serialization format for LiteRT models) |
|
* Memory: indicator of peak RAM usage |
|
* The inference is run on CPU is accelerated via the LiteRT [XNNPACK](https://github.com/google/XNNPACK) delegate with 4 threads |
|
* The inference on GPU is accelerated via LiteRT GPU delegate. |
|
* Benchmark is done assuming XNNPACK cache is enabled |
|
* dynamic_int8: quantized model with int8 weights and float activations. |