Question Answering
LiteRT
English
Gecko-110m-en / README.md
Lumoslulula's picture
Update README.md
61a0d0c verified
---
license: apache-2.0
language:
- en
pipeline_tag: question-answering
---
# litert-community/Gecko-110m-en
This model provides a few variants of the embedding model published in the [Gecko paper](https://arxiv.org/abs/2403.20327) that are ready for deployment on Android or iOS using [LiteRT stack](https://ai.google.dev/edge/litert) or [google ai edge RAG SDK](https://ai.google.dev/edge/mediapipe/solutions/genai/rag).
## Use the models
### Android
* Try out the gecko embedding model in the [google ai edge RAG SDK](https://ai.google.dev/edge/mediapipe/solutions/genai/rag). You can find the SDK on [GitHub](https://github.com/google-ai-edge/ai-edge-apis/tree/main/local_agents/rag) or follow our [android guide](https://ai.google.dev/edge/mediapipe/solutions/genai/rag/android)
to install directly from Maven. We have also published a
[sample app](https://github.com/google-ai-edge/ai-edge-apis/tree/main/examples/rag).
* Use the sentencepiece model as the tokenizer for the Gecko embedding model.
## Performance
### Android
Note that all benchmark stats are from a Samsung S23 Ultra.
<table border="1">
<tr>
<th></th>
<th>Backend</th>
<th>Max sequence length</th>
<th>Init time (ms)</th>
<th>Inference time (ms)</th>
<th>Memory (RSS in MB)</th>
<th>Model size (MB)</th>
</tr>
<tr>
<td><p style="text-align: right">dynamic_int8</p></td>
<td><p style="text-align: right">GPU</p></td>
<td><p style="text-align: right">256</p></td>
<td><p style="text-align: right">1306.06</p></td>
<td><p style="text-align: right">76.2</p></td>
<td><p style="text-align: right">604.5</p></td>
<td><p style="text-align: right">114</p></td>
</tr>
<tr>
<td><p style="text-align: right">dynamic_int8</p></td>
<td><p style="text-align: right">GPU</p></td>
<td><p style="text-align: right">512</p></td>
<td><p style="text-align: right">1363.38</p></td>
<td><p style="text-align: right">173.2</p></td>
<td><p style="text-align: right">604.6</p></td>
<td><p style="text-align: right">120</p></td>
</tr>
<tr>
<td><p style="text-align: right">dynamic_int8</p></td>
<td><p style="text-align: right">GPU</p></td>
<td><p style="text-align: right">1024</p></td>
<td><p style="text-align: right">1419.87</p></td>
<td><p style="text-align: right">397</p></td>
<td><p style="text-align: right">871.1</p></td>
<td><p style="text-align: right">145</p></td>
</tr>
<tr>
<td><p style="text-align: right">dynamic_int8</p></td>
<td><p style="text-align: right">CPU</p></td>
<td><p style="text-align: right">256</p></td>
<td><p style="text-align: right">11.03</p></td>
<td><p style="text-align: right">147.6</p></td>
<td><p style="text-align: right">126.3</p></td>
<td><p style="text-align: right">114</p></td>
</tr>
<tr>
<td><p style="text-align: right">dynamic_int8</p></td>
<td><p style="text-align: right">CPU</p></td>
<td><p style="text-align: right">512</p></td>
<td><p style="text-align: right">30.04</p></td>
<td><p style="text-align: right">353.1</p></td>
<td><p style="text-align: right">225.6</p></td>
<td><p style="text-align: right">120</p></td>
</tr>
<tr>
<td><p style="text-align: right">dynamic_int8</p></td>
<td><p style="text-align: right">CPU</p></td>
<td><p style="text-align: right">1024</p></td>
<td><p style="text-align: right">79.17</p></td>
<td><p style="text-align: right">954</p></td>
<td><p style="text-align: right">619.5</p></td>
<td><p style="text-align: right">145</p></td>
</tr>
</table>
* Model Size: measured by the size of the .tflite flatbuffer (serialization format for LiteRT models)
* Memory: indicator of peak RAM usage
* The inference is run on CPU is accelerated via the LiteRT [XNNPACK](https://github.com/google/XNNPACK) delegate with 4 threads
* The inference on GPU is accelerated via LiteRT GPU delegate.
* Benchmark is done assuming XNNPACK cache is enabled
* dynamic_int8: quantized model with int8 weights and float activations.