File size: 1,590 Bytes
1c06769 faaaff9 1c06769 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
datasets:
- mlabonne/guanaco-llama2-1k
pipeline_tag: text-generation
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
This model is a fine-tuned version of <a href="https://huggingface.co/NousResearch/Llama-2-7b-chat-hf">NousResearch/Llama-2-7b-chat-hf</a> on <a href="https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k">mlabonne/guanaco-llama2-1k</a> dataset.
## Model Details
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Base Model:** <a href = "https://huggingface.co/NousResearch/Llama-2-7b-chat-hf">NousResearch/Llama-2-7b-chat-hf</a>
- **Demo:** <a href = "https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing#scrollTo=ib_We3NLtj2E">llama2 finetuning demo</a>
## How to Get Started with the Model
Use the code below to get started with the model.
```
from transformers import pipeline
prompt = "What is a large language model?"
pipe = pipeline(task="text-generation", model="likhith231/llama-2-7b-miniguanaco",max_length=200)
result = pipe(f"<s>[INST] {prompt} [/INST]")
print(result[0]['generated_text'])
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.17.0
- Tokenizers 0.15.1 |