likhith231 commited on
Commit
1c06769
·
verified ·
1 Parent(s): 02364ce

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -0
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ {}
5
+ ---
6
+
7
+ # Model Card for Model ID
8
+
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
+
11
+ This model is a fine-tuned version of <a href="https://huggingface.co/NousResearch/Llama-2-7b-chat-hf">NousResearch/Llama-2-7b-chat-hf</a> on <a href="https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k">mlabonne/guanaco-llama2-1k</a> dataset.
12
+
13
+ ## Model Details
14
+
15
+ ### Model Sources [optional]
16
+
17
+ <!-- Provide the basic links for the model. -->
18
+
19
+ - **Base Model:** <a href = "https://huggingface.co/NousResearch/Llama-2-7b-chat-hf">NousResearch/Llama-2-7b-chat-hf</a>
20
+ - **Demo:** <a href = "https://colab.research.google.com/drive/1PEQyJO1-f6j0S_XJ8DV50NkpzasXkrzd?usp=sharing#scrollTo=ib_We3NLtj2E">llama2 finetuning demo</a>
21
+
22
+
23
+ ## How to Get Started with the Model
24
+
25
+ Use the code below to get started with the model.
26
+
27
+ ```
28
+ from transformers import pipeline
29
+
30
+ prompt = "What is a large language model?"
31
+ pipe = pipeline(task="text-generation", model="likhith231/llama-2-7b-miniguanaco",max_length=200)
32
+ result = pipe(f"<s>[INST] {prompt} [/INST]")
33
+ print(result[0]['generated_text'])
34
+ ```
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 0.0002
42
+ - train_batch_size: 4
43
+ - eval_batch_size: 8
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: cosine
47
+ - lr_scheduler_warmup_ratio: 0.03
48
+ - num_epochs: 1
49
+
50
+ ### Framework versions
51
+
52
+ - PEFT 0.8.2
53
+ - Transformers 4.37.0
54
+ - Pytorch 2.1.2
55
+ - Datasets 2.17.0
56
+ - Tokenizers 0.15.1