metadata
license: apache-2.0
datasets:
- OpenAssistant/oasst1
- zetavg/ShareGPT-Processed
- augmxnt/ultra-orca-boros-en-ja-v1
language:
- ja
- en
How to use
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("lightblue/karasu-7B-chat")
model = AutoModelForCausalLM.from_pretrained("lightblue/karasu-7B-chat", torch_dtype=torch.bfloat16, device_map="auto")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
pipe(prompt, max_new_tokens=100, do_sample=False, temperature=0.0, return_full_text=False)
Base checkpoint
Training datasets (total ~7B)
- Lightblue's suite of Kujira datasets (unreleased)
- Lightblue's own question-based datasets (unreleased)
- Lightblue's own category-based datasets (unreleased)
- OASST (Japanese chats only)
- ShareGPT (Japanese chats only)
- augmxnt/ultra-orca-boros-en-ja-v1 (['airoboros', 'slimorca', 'ultrafeedback', 'airoboros_ja_new'] only)
Developed by
![Lightblue technology logo](https://www.lightblue-tech.com/wp-content/uploads/2021/10/LBlogo-scaled.jpg)
Engineers
Peter Devine
Sho Higuchi
Advisors
Yuuki Yamanaka
Atom Sonoda
Dataset evaluator
Renju Aoki