|
--- |
|
license: mit |
|
base_model: PORTULAN/albertina-100m-portuguese-ptpt-encoder |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: LVI_albertina-100m-portuguese-ptpt-encoder |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# LVI_albertina-100m-portuguese-ptpt-encoder |
|
|
|
This model is a fine-tuned version of [PORTULAN/albertina-100m-portuguese-ptpt-encoder](https://huggingface.co/PORTULAN/albertina-100m-portuguese-ptpt-encoder) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6932 |
|
- Accuracy: 0.5 |
|
- F1: 0.0 |
|
- Precision: 0.0 |
|
- Recall: 0.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.5678 | 1.0 | 3217 | 0.6316 | 0.6653 | 0.5619 | 0.8128 | 0.4294 | |
|
| 0.6042 | 2.0 | 6434 | 0.6911 | 0.5 | 0.0 | 0.0 | 0.0 | |
|
| 0.6946 | 3.0 | 9651 | 0.6932 | 0.5 | 0.0 | 0.0 | 0.0 | |
|
| 0.694 | 4.0 | 12868 | 0.6932 | 0.5 | 0.6667 | 0.5 | 1.0 | |
|
| 0.6942 | 5.0 | 16085 | 0.6933 | 0.5 | 0.6667 | 0.5 | 1.0 | |
|
| 0.6936 | 6.0 | 19302 | 0.6937 | 0.5 | 0.6667 | 0.5 | 1.0 | |
|
| 0.6937 | 7.0 | 22519 | 0.6932 | 0.5 | 0.0 | 0.0 | 0.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|