|
--- |
|
license: mit |
|
base_model: PORTULAN/albertina-900m-portuguese-ptpt-encoder |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: LVI_albertina-900m-portuguese-ptpt-encoder |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# LVI_albertina-900m-portuguese-ptpt-encoder |
|
|
|
This model is a fine-tuned version of [PORTULAN/albertina-900m-portuguese-ptpt-encoder](https://huggingface.co/PORTULAN/albertina-900m-portuguese-ptpt-encoder) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1651 |
|
- Accuracy: 0.9832 |
|
- F1: 0.9833 |
|
- Precision: 0.9779 |
|
- Recall: 0.9889 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.1273 | 1.0 | 12866 | 0.1718 | 0.9676 | 0.9668 | 0.9914 | 0.9434 | |
|
| 0.1034 | 2.0 | 25732 | 0.1283 | 0.9814 | 0.9813 | 0.9844 | 0.9782 | |
|
| 0.0292 | 3.0 | 38598 | 0.1219 | 0.9850 | 0.9850 | 0.9828 | 0.9872 | |
|
| 0.0251 | 4.0 | 51464 | 0.1203 | 0.9857 | 0.9856 | 0.9901 | 0.9812 | |
|
| 0.013 | 5.0 | 64330 | 0.1240 | 0.9837 | 0.9836 | 0.9896 | 0.9777 | |
|
| 0.0237 | 6.0 | 77196 | 0.1294 | 0.9848 | 0.9849 | 0.9809 | 0.9889 | |
|
| 0.0153 | 7.0 | 90062 | 0.1651 | 0.9832 | 0.9833 | 0.9779 | 0.9889 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|