See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: jingyeom/seal3.1.6n_7b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a1f48e343e632d4d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a1f48e343e632d4d_train_data.json
type:
field_input: "\u5730\u57DF"
field_instruction: "\u666F\u6C17\u306E\u73FE\u72B6\u5224\u65AD"
field_output: "\u8FFD\u52A0\u8AAC\u660E\u53CA\u3073\u5177\u4F53\u7684\u72B6\u6CC1\
\u306E\u8AAC\u660E"
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: lhong4759/c24f2f5e-777e-4ce7-9348-9e064ba08b0e
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/a1f48e343e632d4d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 564ac9ba-2a9f-47a1-80f0-3b5121868464
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 564ac9ba-2a9f-47a1-80f0-3b5121868464
warmup_steps: 5
weight_decay: 0.01
xformers_attention: true
c24f2f5e-777e-4ce7-9348-9e064ba08b0e
This model is a fine-tuned version of jingyeom/seal3.1.6n_7b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4196
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6489 | 0.0052 | 200 | 1.4196 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for lhong4759/c24f2f5e-777e-4ce7-9348-9e064ba08b0e
Base model
jingyeom/seal3.1.6n_7b