license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model_index:
- name: bert-portuguese-ner-archive
results:
- task:
name: Token Classification
type: token-classification
metric:
name: Accuracy
type: accuracy
value: 0.9700325118974698
bert-portuguese-ner-archive
This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased It achieves the following results on the evaluation set:
- Loss: 0.1140
- Precision: 0.9147
- Recall: 0.9483
- F1: 0.9312
- Accuracy: 0.9700
Model description
This model was fine-tunned on token classification task (NER) on Portuguese archival documents. The annotated labels are: Date, Profession, Person, Place, Organization
Datasets
All the training and evaluation data is available at: http://ner.epl.di.uminho.pt/
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 192 | 0.1438 | 0.8917 | 0.9392 | 0.9148 | 0.9633 |
0.2454 | 2.0 | 384 | 0.1222 | 0.8985 | 0.9417 | 0.9196 | 0.9671 |
0.0526 | 3.0 | 576 | 0.1098 | 0.9150 | 0.9481 | 0.9312 | 0.9698 |
0.0372 | 4.0 | 768 | 0.1140 | 0.9147 | 0.9483 | 0.9312 | 0.9700 |
Framework versions
- Transformers 4.10.0.dev0
- Pytorch 1.9.0+cu111
- Datasets 1.10.2
- Tokenizers 0.10.3
Citation
@InProceedings{10.1007/978-3-031-04819-7_33, author="da Costa Cunha, Lu{'i}s Filipe and Ramalho, Jos{'e} Carlos", editor="Rocha, Alvaro and Adeli, Hojjat and Dzemyda, Gintautas and Moreira, Fernando", title="NER in Archival Finding Aids: Next Level", booktitle="Information Systems and Technologies", year="2022", publisher="Springer International Publishing", address="Cham", pages="333--342", isbn="978-3-031-04819-7" }