ViT5 Motor Extractor
Model Card for letran1110/vit5_motor_extractor
This is a fine-tuned ViT5 model for extracting motor specifications from raw text descriptions. The model is trained to take in noisy or unstructured motor-related information and output structured key-value pairs such as power, voltage, poles, protection class, and more.
π§ Model Details
- Model Type:
T5ForConditionalGeneration
- Language(s): Vietnamese (primary), English (partially)
- Finetuned From:
VietAI/vit5-base
- License: MIT
- Framework: π€ Transformers
π§ How to Use
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("letran1110/vit5_motor_extractor")
model = AutoModelForSeq2SeqLM.from_pretrained("letran1110/vit5_motor_extractor")
text = "Δα»ng cΖ‘ 3 pha 5.5kW, 4 cα»±c, Δiα»n Γ‘p 380V, vα» nhΓ΄m, bαΊ£o vα» IP55"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
β Intended Use
This model is designed to help extract structured information from motor specification descriptions (both Vietnamese and partial English), useful in:
Inventory parsing
Industrial cataloging
Smart search & indexing for motor components
β Out-of-Scope Use
Long-form document QA
General conversation
Image-based input (OCR must be done separately)
π Training
Dataset: Custom dataset crawled and annotated from motor product pages
Epochs: 10
Batch Size: 16
Max Length: 512
Optimizer: AdamW
π§ͺ Evaluation
Evaluation is manual by checking structured JSON outputs. Target fields include:
motor_name
power
voltage
poles
protection
frame_size
shaft_diameter
material
π€ Citation
If you use this model, please cite the repo:
@misc{vit5motor2024,
title={ViT5 Motor Extractor},
author={letran1110},
year={2024},
howpublished={\url{https://huggingface.co/letran1110/vit5_motor_extractor}},
}
- Downloads last month
- 1