See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/really-tiny-falcon-testing
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e87224c8eb065bc2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e87224c8eb065bc2_train_data.json
type:
field_input: intent
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso16/cb25be4a-1449-40a2-8109-b264b1323006
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000216
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 25000
micro_batch_size: 4
mlflow_experiment_name: /tmp/e87224c8eb065bc2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 160
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 1cd1f24c-cd92-4120-99af-dc7e5e1a2626
wandb_project: 16a
wandb_run: your_name
wandb_runid: 1cd1f24c-cd92-4120-99af-dc7e5e1a2626
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
cb25be4a-1449-40a2-8109-b264b1323006
This model is a fine-tuned version of fxmarty/really-tiny-falcon-testing on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.9429
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000216
- train_batch_size: 4
- eval_batch_size: 4
- seed: 160
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 25000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0001 | 1 | 11.0842 |
87.9232 | 0.0563 | 500 | 10.9857 |
87.8442 | 0.1127 | 1000 | 10.9758 |
87.8066 | 0.1690 | 1500 | 10.9695 |
87.7834 | 0.2254 | 2000 | 10.9653 |
87.7611 | 0.2817 | 2500 | 10.9617 |
87.7402 | 0.3381 | 3000 | 10.9590 |
87.7235 | 0.3944 | 3500 | 10.9564 |
87.7075 | 0.4508 | 4000 | 10.9547 |
87.7165 | 0.5071 | 4500 | 10.9536 |
87.7037 | 0.5635 | 5000 | 10.9525 |
87.7007 | 0.6198 | 5500 | 10.9517 |
87.6844 | 0.6762 | 6000 | 10.9507 |
87.6852 | 0.7325 | 6500 | 10.9500 |
87.6855 | 0.7889 | 7000 | 10.9495 |
87.6894 | 0.8452 | 7500 | 10.9487 |
87.6775 | 0.9015 | 8000 | 10.9483 |
87.6793 | 0.9579 | 8500 | 10.9477 |
87.662 | 1.0143 | 9000 | 10.9471 |
87.6669 | 1.0706 | 9500 | 10.9467 |
87.6676 | 1.1270 | 10000 | 10.9459 |
87.6588 | 1.1833 | 10500 | 10.9458 |
87.6601 | 1.2397 | 11000 | 10.9454 |
87.658 | 1.2960 | 11500 | 10.9452 |
87.6455 | 1.3524 | 12000 | 10.9451 |
87.647 | 1.4087 | 12500 | 10.9447 |
87.6441 | 1.4650 | 13000 | 10.9446 |
87.641 | 1.5214 | 13500 | 10.9444 |
87.6401 | 1.5777 | 14000 | 10.9442 |
87.6508 | 1.6341 | 14500 | 10.9442 |
87.6442 | 1.6904 | 15000 | 10.9440 |
87.6442 | 1.7468 | 15500 | 10.9439 |
87.653 | 1.8031 | 16000 | 10.9437 |
87.6379 | 1.8595 | 16500 | 10.9437 |
87.6483 | 1.9158 | 17000 | 10.9435 |
87.6465 | 1.9722 | 17500 | 10.9435 |
87.6348 | 2.0285 | 18000 | 10.9433 |
87.6466 | 2.0849 | 18500 | 10.9433 |
87.6434 | 2.1412 | 19000 | 10.9433 |
87.6441 | 2.1976 | 19500 | 10.9430 |
87.6309 | 2.2539 | 20000 | 10.9430 |
87.6324 | 2.3103 | 20500 | 10.9430 |
87.64 | 2.3666 | 21000 | 10.9430 |
87.6376 | 2.4230 | 21500 | 10.9429 |
87.6364 | 2.4793 | 22000 | 10.9429 |
87.645 | 2.5357 | 22500 | 10.9429 |
87.6321 | 2.5920 | 23000 | 10.9429 |
87.6373 | 2.6484 | 23500 | 10.9429 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for lesso16/cb25be4a-1449-40a2-8109-b264b1323006
Base model
fxmarty/really-tiny-falcon-testing