Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/really-tiny-falcon-testing
bf16: true
chat_template: llama3
datasets:
- data_files:
  - b7579f95e5fddef2_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/b7579f95e5fddef2_train_data.json
  type:
    field_instruction: title
    field_output: summary
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso10/ddcbca72-9331-4b3c-8095-b765ecdce61d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/b7579f95e5fddef2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f24e1d97-00b2-40da-ac57-f562f43fb645
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f24e1d97-00b2-40da-ac57-f562f43fb645
warmup_steps: 5
weight_decay: 0.0
xformers_attention: null

ddcbca72-9331-4b3c-8095-b765ecdce61d

This model is a fine-tuned version of fxmarty/really-tiny-falcon-testing on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.0436

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
44.3714 0.0001 1 11.0964
44.4025 0.0004 5 11.0916
44.339 0.0008 10 11.0820
44.2981 0.0012 15 11.0699
44.2424 0.0016 20 11.0618
44.2131 0.0020 25 11.0547
44.1721 0.0024 30 11.0482
44.1726 0.0028 35 11.0471
44.1719 0.0031 40 11.0453
44.1559 0.0035 45 11.0438
44.1624 0.0039 50 11.0436

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso10/ddcbca72-9331-4b3c-8095-b765ecdce61d

Adapter
(289)
this model