Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/Genstruct-7B
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 0cb7901249b31bd9_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/0cb7901249b31bd9_train_data.json
  type:
    field_instruction: full_prompt
    field_output: example
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 5
eval_table_size: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso04/1d33e498-cca8-4268-821c-1d74fd7195d0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 2.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 25
micro_batch_size: 2
mlflow_experiment_name: /tmp/0cb7901249b31bd9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 56aa67fa-533a-4e46-b407-4d26cc873964
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 56aa67fa-533a-4e46-b407-4d26cc873964
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

1d33e498-cca8-4268-821c-1d74fd7195d0

This model is a fine-tuned version of NousResearch/Genstruct-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0005

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 25

Training results

Training Loss Epoch Step Validation Loss
1.4461 0.0336 1 0.4091
1.356 0.1681 5 0.3586
0.3985 0.3361 10 0.0475
0.0244 0.5042 15 0.0040
0.0045 0.6723 20 0.0007
0.0023 0.8403 25 0.0005

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso04/1d33e498-cca8-4268-821c-1d74fd7195d0

Adapter
(161)
this model