End of training
Browse files
README.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: mit
|
4 |
+
base_model: fxmarty/really-tiny-falcon-testing
|
5 |
+
tags:
|
6 |
+
- axolotl
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: 561cc045-d57d-4d40-932e-390287a2eaac
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
17 |
+
<br>
|
18 |
+
|
19 |
+
# 561cc045-d57d-4d40-932e-390287a2eaac
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [fxmarty/really-tiny-falcon-testing](https://huggingface.co/fxmarty/really-tiny-falcon-testing) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 10.9172
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.000202
|
43 |
+
- train_batch_size: 4
|
44 |
+
- eval_batch_size: 4
|
45 |
+
- seed: 20
|
46 |
+
- gradient_accumulation_steps: 8
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 100
|
51 |
+
- training_steps: 25000
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
56 |
+
|:-------------:|:------:|:-----:|:---------------:|
|
57 |
+
| No log | 0.0002 | 1 | 11.0859 |
|
58 |
+
| 87.8237 | 0.1129 | 500 | 10.9719 |
|
59 |
+
| 87.7348 | 0.2258 | 1000 | 10.9600 |
|
60 |
+
| 87.6865 | 0.3386 | 1500 | 10.9512 |
|
61 |
+
| 87.6515 | 0.4515 | 2000 | 10.9449 |
|
62 |
+
| 87.6171 | 0.5644 | 2500 | 10.9406 |
|
63 |
+
| 87.5821 | 0.6773 | 3000 | 10.9366 |
|
64 |
+
| 87.5827 | 0.7902 | 3500 | 10.9341 |
|
65 |
+
| 87.5556 | 0.9031 | 4000 | 10.9321 |
|
66 |
+
| 87.5578 | 1.0159 | 4500 | 10.9300 |
|
67 |
+
| 87.5512 | 1.1288 | 5000 | 10.9284 |
|
68 |
+
| 87.5338 | 1.2417 | 5500 | 10.9271 |
|
69 |
+
| 87.5222 | 1.3546 | 6000 | 10.9265 |
|
70 |
+
| 87.5199 | 1.4675 | 6500 | 10.9258 |
|
71 |
+
| 87.5171 | 1.5804 | 7000 | 10.9247 |
|
72 |
+
| 87.5118 | 1.6932 | 7500 | 10.9238 |
|
73 |
+
| 87.5051 | 1.8061 | 8000 | 10.9233 |
|
74 |
+
| 87.508 | 1.9190 | 8500 | 10.9228 |
|
75 |
+
| 87.4979 | 2.0319 | 9000 | 10.9221 |
|
76 |
+
| 87.4973 | 2.1448 | 9500 | 10.9216 |
|
77 |
+
| 87.512 | 2.2577 | 10000 | 10.9213 |
|
78 |
+
| 87.4823 | 2.3705 | 10500 | 10.9210 |
|
79 |
+
| 87.4886 | 2.4834 | 11000 | 10.9207 |
|
80 |
+
| 87.4873 | 2.5963 | 11500 | 10.9202 |
|
81 |
+
| 87.4897 | 2.7092 | 12000 | 10.9200 |
|
82 |
+
| 87.4782 | 2.8221 | 12500 | 10.9196 |
|
83 |
+
| 87.4864 | 2.9350 | 13000 | 10.9196 |
|
84 |
+
| 87.4777 | 3.0478 | 13500 | 10.9194 |
|
85 |
+
| 87.4821 | 3.1607 | 14000 | 10.9189 |
|
86 |
+
| 87.479 | 3.2736 | 14500 | 10.9188 |
|
87 |
+
| 87.4648 | 3.3865 | 15000 | 10.9185 |
|
88 |
+
| 87.4757 | 3.4994 | 15500 | 10.9184 |
|
89 |
+
| 87.4546 | 3.6122 | 16000 | 10.9184 |
|
90 |
+
| 87.4722 | 3.7251 | 16500 | 10.9183 |
|
91 |
+
| 87.4617 | 3.8380 | 17000 | 10.9179 |
|
92 |
+
| 87.4607 | 3.9509 | 17500 | 10.9181 |
|
93 |
+
| 87.4602 | 4.0638 | 18000 | 10.9178 |
|
94 |
+
| 87.4577 | 4.1767 | 18500 | 10.9176 |
|
95 |
+
| 87.4592 | 4.2895 | 19000 | 10.9175 |
|
96 |
+
| 87.4784 | 4.4024 | 19500 | 10.9174 |
|
97 |
+
| 87.4644 | 4.5153 | 20000 | 10.9173 |
|
98 |
+
| 87.4677 | 4.6282 | 20500 | 10.9174 |
|
99 |
+
| 87.465 | 4.7411 | 21000 | 10.9174 |
|
100 |
+
| 87.4606 | 4.8540 | 21500 | 10.9172 |
|
101 |
+
| 87.4689 | 4.9668 | 22000 | 10.9173 |
|
102 |
+
| 87.4515 | 5.0797 | 22500 | 10.9172 |
|
103 |
+
| 87.4637 | 5.1926 | 23000 | 10.9172 |
|
104 |
+
| 87.4589 | 5.3055 | 23500 | 10.9172 |
|
105 |
+
| 87.4596 | 5.4184 | 24000 | 10.9172 |
|
106 |
+
| 87.461 | 5.5313 | 24500 | 10.9173 |
|
107 |
+
| 87.4639 | 5.6441 | 25000 | 10.9172 |
|
108 |
+
|
109 |
+
|
110 |
+
### Framework versions
|
111 |
+
|
112 |
+
- PEFT 0.13.2
|
113 |
+
- Transformers 4.46.0
|
114 |
+
- Pytorch 2.5.0+cu124
|
115 |
+
- Datasets 3.0.1
|
116 |
+
- Tokenizers 0.20.1
|