Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/really-tiny-falcon-testing
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 415dedee96180e11_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/415dedee96180e11_train_data.json
  type:
    field_instruction: instruction
    field_output: response
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso02/561cc045-d57d-4d40-932e-390287a2eaac
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000202
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 25000
micro_batch_size: 4
mlflow_experiment_name: /tmp/415dedee96180e11_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 20
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 5941f67d-1b56-4ae0-b76d-52a8681c66f9
wandb_project: 02a
wandb_run: your_name
wandb_runid: 5941f67d-1b56-4ae0-b76d-52a8681c66f9
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

561cc045-d57d-4d40-932e-390287a2eaac

This model is a fine-tuned version of fxmarty/really-tiny-falcon-testing on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.9172

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000202
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 20
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 25000

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 11.0859
87.8237 0.1129 500 10.9719
87.7348 0.2258 1000 10.9600
87.6865 0.3386 1500 10.9512
87.6515 0.4515 2000 10.9449
87.6171 0.5644 2500 10.9406
87.5821 0.6773 3000 10.9366
87.5827 0.7902 3500 10.9341
87.5556 0.9031 4000 10.9321
87.5578 1.0159 4500 10.9300
87.5512 1.1288 5000 10.9284
87.5338 1.2417 5500 10.9271
87.5222 1.3546 6000 10.9265
87.5199 1.4675 6500 10.9258
87.5171 1.5804 7000 10.9247
87.5118 1.6932 7500 10.9238
87.5051 1.8061 8000 10.9233
87.508 1.9190 8500 10.9228
87.4979 2.0319 9000 10.9221
87.4973 2.1448 9500 10.9216
87.512 2.2577 10000 10.9213
87.4823 2.3705 10500 10.9210
87.4886 2.4834 11000 10.9207
87.4873 2.5963 11500 10.9202
87.4897 2.7092 12000 10.9200
87.4782 2.8221 12500 10.9196
87.4864 2.9350 13000 10.9196
87.4777 3.0478 13500 10.9194
87.4821 3.1607 14000 10.9189
87.479 3.2736 14500 10.9188
87.4648 3.3865 15000 10.9185
87.4757 3.4994 15500 10.9184
87.4546 3.6122 16000 10.9184
87.4722 3.7251 16500 10.9183
87.4617 3.8380 17000 10.9179
87.4607 3.9509 17500 10.9181
87.4602 4.0638 18000 10.9178
87.4577 4.1767 18500 10.9176
87.4592 4.2895 19000 10.9175
87.4784 4.4024 19500 10.9174
87.4644 4.5153 20000 10.9173
87.4677 4.6282 20500 10.9174
87.465 4.7411 21000 10.9174
87.4606 4.8540 21500 10.9172
87.4689 4.9668 22000 10.9173
87.4515 5.0797 22500 10.9172
87.4637 5.1926 23000 10.9172
87.4589 5.3055 23500 10.9172
87.4596 5.4184 24000 10.9172
87.461 5.5313 24500 10.9173
87.4639 5.6441 25000 10.9172

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso02/561cc045-d57d-4d40-932e-390287a2eaac

Adapter
(260)
this model