See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: katuni4ka/tiny-random-qwen1.5-moe
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- a5ffd4a12886ce24_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a5ffd4a12886ce24_train_data.json
type:
field_input: thinking
field_instruction: prompt
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 50
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: true
hub_model_id: lesso01/4a1a8aee-716b-4928-a5f0-b5bc65f7f0c1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000201
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/a5ffd4a12886ce24_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
seed: 10
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f66709ae-7dde-4697-98bf-305cdca7fc8a
wandb_project: 01a
wandb_run: your_name
wandb_runid: f66709ae-7dde-4697-98bf-305cdca7fc8a
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null
4a1a8aee-716b-4928-a5f0-b5bc65f7f0c1
This model is a fine-tuned version of katuni4ka/tiny-random-qwen1.5-moe on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.8484
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000201
- train_batch_size: 4
- eval_batch_size: 4
- seed: 10
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0005 | 1 | 11.9408 |
11.9242 | 0.0269 | 50 | 11.9172 |
11.8615 | 0.0538 | 100 | 11.8722 |
11.8503 | 0.0807 | 150 | 11.8583 |
11.8433 | 0.1076 | 200 | 11.8548 |
11.8428 | 0.1344 | 250 | 11.8525 |
11.8378 | 0.1613 | 300 | 11.8506 |
11.8462 | 0.1882 | 350 | 11.8490 |
11.8346 | 0.2151 | 400 | 11.8487 |
11.8375 | 0.2420 | 450 | 11.8483 |
11.8383 | 0.2689 | 500 | 11.8484 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for lesso01/4a1a8aee-716b-4928-a5f0-b5bc65f7f0c1
Base model
katuni4ka/tiny-random-qwen1.5-moe